• Acta Physica Sinica
  • Vol. 69, Issue 11, 117701-1 (2020)
Yuan-Yuan Lu1, Gui-Hua Lu1, Heng-Wei Zhou1、*, and Yi-Neng Huang1、2、*
Author Affiliations
  • 1Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
  • 2National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.7498/aps.69.20200232 Cite this Article
    Yuan-Yuan Lu, Gui-Hua Lu, Heng-Wei Zhou, Yi-Neng Huang. Preparation and properties of spodumene/silicon carbide composite ceramic materials[J]. Acta Physica Sinica, 2020, 69(11): 117701-1 Copy Citation Text show less
    XRD patterns of β-spodumene: (a) β-LiAlSi2O6; (b) ICSD No. 01-071-2058
    Fig. 1. XRD patterns of β-spodumene: (a) β-LiAlSi2O6; (b) ICSD No. 01-071-2058
    XRD patterns of spodumene/silicon carbide composi-tes.
    Fig. 2. XRD patterns of spodumene/silicon carbide composi-tes.
    XRD patterns of 40SP sample in the starting and the sintered at 1550 ℃.
    Fig. 3. XRD patterns of 40SP sample in the starting and the sintered at 1550 ℃.
    SEM micrographs of the fracture surface of spodumene/silicon composites: (a) 25SP; (b) 30SP; (c) 35SP; (d) 40SP.
    Fig. 4. SEM micrographs of the fracture surface of spodumene/silicon composites: (a) 25SP; (b) 30SP; (c) 35SP; (d) 40SP.
    Apparent porosity and Young’s modulus of the spodumene/silicon carbide composites.
    Fig. 5. Apparent porosity and Young’s modulus of the spodumene/silicon carbide composites.
    Expansion versus temperature of the spodumene/sili-con carbide composites.
    Fig. 6. Expansion versus temperature of the spodumene/sili-con carbide composites.
    Microcrack of 35 SP composite.
    Fig. 7. Microcrack of 35 SP composite.
    System/materialCET/10–6–1Temperature range/℃
    Li2O·Al2O3·2SiO2 (LiAlSiO4, Eucryptite) –6.225—800
    Li2O·Al2O3·3SiO2 (Solid solution of eucryptite) Negative near zero CET25—1000
    Li2O·Al2O3·4SiO2 (β-LiAlSi2O6, β-Spodumene) 0.925—1000
    Li2O·Al2O3·6SiO2 (LiAlSi3O8, Virgilite) 0.525—1000
    Li2O·Al2O3·8SiO2 (LiAlSi4O10, Petalite) 0.325—1000
    Li2O·Al2O3·10SiO20.525—1000
    LAS + TiO2 (Pyroceram) –0.07—0.30
    LAS + TiO2 + ZrO2 (Cer-Vit) 0.05—0.30
    Hercuvit (LAS-based transparentlow expanding glass-ceramic)0—0.3
    Table 1. Average linear thermal expansion coefficient (CET) of some important materials based on LAS system.
    PhaseSi, Al—O/ÅLi—O/ ÅSi, Al—Li/ÅO—O (Li tetrahedra)/ÅO—O (Si, Al tetrahedra)/ÅV3Dc/g·cm–3
    Te-SP1.6432.0812.628/2.7103.3392.682520.6712.374
    He-SP1.6412.0682.6093.3372.679128.7902.399
    Table 2.

    The atomic bond lengths, cell volume and density of tetragonal and hexagonal spodumene.

    四方相β-锂辉石和六方相锂辉石原子键长、晶胞体积和密度

    β–Spodumene content/ mass% Apparent porosity/ % Bulk density/ g·cm–3Young’s modulus/ GPa α (–150—25 ℃)/ –1α (25—480 ℃)/ –1
    SP25381.8195.3 ± 0.10.23 × 10–61.83 × 10–6
    SP30321.82123.8 ± 0.40.60 × 10–62.95 × 10–6
    SP35192.24204.2 ± 0.50.53 × 10–65.71 × 10–6
    SP40291.95119.6 ± 0.51.14 × 10–62.50 × 10–6
    Table 3.

    Characteristics of spodumene/ silicon carbide composites.

    锂辉石/碳化硅复相陶瓷材料的性能

    Yuan-Yuan Lu, Gui-Hua Lu, Heng-Wei Zhou, Yi-Neng Huang. Preparation and properties of spodumene/silicon carbide composite ceramic materials[J]. Acta Physica Sinica, 2020, 69(11): 117701-1
    Download Citation