• Chinese Journal of Lasers
  • Vol. 44, Issue 6, 603001 (2017)
Wu Xiupin1、2、*, Gao Wanrong1、2, Zhang Yunxu1、2, and He Yong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0603001 Cite this Article Set citation alerts
    Wu Xiupin, Gao Wanrong, Zhang Yunxu, He Yong. New Method for Non-Destructive Quantitative Measurement of Subsurface Damage Within Glasses[J]. Chinese Journal of Lasers, 2017, 44(6): 603001 Copy Citation Text show less
    References

    [1] Preston F W. The structure of abraded glass surfaces[J]. Transactions of the Optical Society, 1922, 23(3): 141.

    [2] Li Yong, Zhou Zhaoying, Ye Xiongying. An overview of Research on Microvalves and Micropumps[J]. Chinese Journal of Scientific Instrument, 1996, 17(1): 56-60.

    [3] Yan Zhanhui. Present status of ultra-precision machining technology of silicon wafer[J]. Semiconductor Technology, 2005, 30(11): 31-34.

    [4] Kevin R F, Reinhold G, Tung G, et al. Non-destructive, real time direct measurement of subsurface damage[C]. SPIE, 2005, 5799: 105-110.

    [5] Stahl H P. Optics needs for future space telescopes[C]. SPIE, 2004, 5180: 1-5.

    [6] Hed P P, Edwards D F. Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage[J]. Applied Optics, 1987, 26(21): 4677-4680.

    [7] Lambropoulos J C, Li Y, Funkenbusch P D, et al. Noncontact estimate of grinding-induced subsurface damage[C]. SPIE, 1999, 3782: 41-50.

    [8] Carr J W, Fearon E, Haack J, et al. Subsurface structure in polished fused silica and diamond turned single crystal silicon[R]. Livermore: Lawrence Livermore National Laboratory, 1999.

    [9] Lambropoulos J C, Jacobs S D, Ruckman J. Micromechanics of material removal mechanisms from brittle surfaces: Subsurface damage and surface microroughness[J]. LLE Review, 1998, 74: 131-138.

    [10] Lambropoulos J C, Gillman B E, Zhou Y Y, et al. Glass-ceramics: Deterministic microgrinding, lapping, and polishing[C]. SPIE, 1997, 3134: 178-189.

    [11] Lambropoulos J C, Jacobs S D, Gillman B, et al. Subsurface damage in microgrinding optical glasses[J]. Ceramics Transactions, 1997, 82: 469-474.

    [12] Lambropoulos J C, Fang T, Funkenbusch P D, et al. Surface microroughness of optical glasses under deterministic microgrinding[J]. Applied Optics, 1996, 35(22): 4448-4462.

    [13] Lambropoulos J C. From abrasive size to subsurface damage in grinding[C]. Optical Fabrication and Testing, 2000: OMA6.

    [14] Randi J A, Lambropoulos J C, Jacobs S D. Subsurface damage in some single crystalline optical materials[J]. Applied Optics, 2005, 44(12): 2241-2249.

    [15] Ball M J, Murphy N A, Shore P. Electrolytically assisted ductile-mode diamond grinding of BK7 and SF10 optical glasses[C]. SPIE, 1992, 1573: 30-38.

    [16] Sun X, Stephenson D J, Ohnishi O, et al. An investigation into parallel and cross grinding of BK7 glass[J]. Precision Engineering, 2006, 30(2): 145-153.

    [17] Tonnellier X, Shore P, Luo X, et al. Wheel wear and surface/subsurface qualities when precision grinding optical materials[C]. SPIE, 2006, 6273: 627308.

    [18] Zhou Y, Funkenbusch P D, Quesnel D J, et al. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses[J]. Journal of the American Ceramic Society, 1994, 77(12): 3277-3280.

    [19] Suratwala T, Wong L, Miller P, et al. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 2006, 352(52): 5601-5617.

    [20] Neauport J, Ambard C, Cormont P, et al. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Optics Express, 2009, 17(22): 20448-20456.

    [21] Suratwala T, Steele R, Feit M D, et al. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing[J]. Journal of Non-Crystalline Solids, 2008, 354(18): 2023-2037.

    [22] Wang Z, Wu Y, Dai Y, et al. Subsurface damage distribution in the lapping process[J]. Applied Optics, 2008, 47(10): 1417-1426.

    [23] Puttick K E, Jeynes C, Whitmore L, et al. Surface damage in nano-ground silicon[C]. Proceeding of IMECH, 1992: 49-51.

    [24] Shibata T, Ono A, Kurihara K, et al. Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces[J]. Applied Physics Letters, 1994, 65(20): 2553-2555.

    [25] Wang J, Maier R L. Quasi-Brewster angle technique for evaluating the quality of optical surfaces[C]. SPIE, 2004, 5375: 1286-1294.

    [26] Fine K R, Garbe R, Gip T, et al. Non-destructive real-time direct measurement of subsurface damage[C]. SPIE, 2005, 5799: 105-110.

    [27] Neauport J, Cormont P, Legros P, et al. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy[J]. Optics Express, 2009, 17(5): 3543-3554.

    [28] Fhnle O W, Wons T, Koch E, et al. iTIRM as a tool for qualifying polishing processes[J]. Applied Optics, 2002, 41(19): 4036-4038.

    [29] van der Bijl R-J M, Fhnle O W, van Brug H, et al. In-process monitoring of grinding and polishing of optical surfaces[J]. Applied Optics, 2000, 39(19): 3300-3303.

    [30] Bismayer U, Brinksmeier E, Güttler B, et al. Measurement of subsurface damage in silicon wafers[J]. Precision Engineering, 1994, 16(2): 139-144.

    [31] Warren B E. X-ray diffraction methods[J]. Journal of Applied Physics, 1941, 12(5): 375-384.

    [32] Gogotsi Y, Baek C, Kirscht F. Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon[J]. Semiconductor Science and Technology, 1999, 14(10): 936.

    [33] Wu X, Gao W, He Y. Estimation of parameters for evaluating subsurface microcracks in glass with in-line digital holographic microscopy[J]. Applied Optics, 2016, 55(3): A32-A42.

    [34] Stifter D, Burgholzer P, Hglinger O, et al. Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping[J]. Applied Physics A, 2003, 76(6): 947-951.

    [35] Liu Ningning, Xu Xiaojing, Zhang Ning, et al. Studies on optical coherence tomographic images from nondestructive paint chips of motor vehicles[J]. Criminal Technique, 2016, 41(5): 367-371.

    [36] Stifter D. Beyond biomedicine: A review of alternative applications and developments for optical coherence tomography[J]. Applied Physics B, 2007, 88(3): 337-357.

    [37] Guss G M, Bass I L, Hackel R P, et al. In situ monitoring of surface postprocessing in large-aperture fused silica optics with optical coherence tomography[J]. Applied Optics, 2008, 47(25): 4569-4573.

    [38] Bashkansky M, Iii D L, Pujari V, et al. Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography[J]. NDT & E International, 2001, 34(8): 547-555.

    Wu Xiupin, Gao Wanrong, Zhang Yunxu, He Yong. New Method for Non-Destructive Quantitative Measurement of Subsurface Damage Within Glasses[J]. Chinese Journal of Lasers, 2017, 44(6): 603001
    Download Citation