• Nano-Micro Letters
  • Vol. 16, Issue 1, 254 (2024)
Yumei Wang1,2,†,*, Zhongting Wang3,†, Xiaoyu Xu2,4..., Sam Jin An Oh4, Jianguo Sun4, Feng Zheng4, Xiao Lu4, Chaohe Xu1,**, Binggong Yan5, Guangsheng Huang3 and Li Lu2,4,***|Show fewer author(s)
Author Affiliations
  • 1College of Aerospace Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
  • 2National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, People’s Republic of China
  • 3College of Materials Science and Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
  • 4Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
  • 5Fujian Key Laboratory of Special Energy Manufacturing, Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University, Xiamen 361021, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01474-6 Cite this Article
    Yumei Wang, Zhongting Wang, Xiaoyu Xu, Sam Jin An Oh, Jianguo Sun, Feng Zheng, Xiao Lu, Chaohe Xu, Binggong Yan, Guangsheng Huang, Li Lu. Ultra-Stable Sodium-Ion Battery Enabled by All-Solid-State Ferroelectric-Engineered Composite Electrolytes[J]. Nano-Micro Letters, 2024, 16(1): 254 Copy Citation Text show less
    References

    [1] H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013).

    [2] Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022).

    [3] M. Wu, W. Ni, J. Hu, J. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11, 44 (2019).

    [4] M.-Y. Wang, X.-X. Zhao, J.-Z. Guo, X.-J. Nie, Z.-Y. Gu et al., Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3–x(P2O7)x cathode material. Green Energy Environ. 7, 763–771 (2022).

    [5] J.-Z. Guo, Z.-Y. Gu, M. Du, X.-X. Zhao, X.-T. Wang et al., Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries. Mater. Today 66, 221–244 (2023).

    [6] Q.-M. Yin, Z.-Y. Gu, Y. Liu, H.-Y. Lü, Y.-T. Liu et al., Mn-rich phosphate cathode for sodium-ion batteries: anion-regulated solid solution behavior and long-term cycle life. Adv. Funct. Mater. 33, 2370224 (2023).

    [7] G. Chen, Q. Huang, T. Wu, L. Lu, Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020).

    [8] S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang et al., Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017).

    [9] Z. Jian, Y.-S. Hu, X. Ji, W. Chen, NASICON-structured materials for energy storage. Adv. Mater. 29, 1601925 (2017).

    [10] H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55, 12768–12772 (2016).

    [11] B. Moossa, J. James Abraham, R. Kahraman, S. Al-Qaradawi, T.M. Al Tahtamouni et al., Utilization of symmetric electrode materials in energy storage application: a review. Int. J. Energy Res. 46, 8590–8624 (2022).

    [12] A. Kumar, Nagmani, S. Puravankara, Symmetric sodium-ion batteries—materials, mechanisms, and prospects. Mater. Today Energy 29, 101115 (2022).

    [13] L.S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-I. Yamaki, Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 157, A536 (2010).

    [14] S. Li, Y. Dong, L. Xu, X. Xu, L. He et al., Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014).

    [15] W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang et al., Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2, 8668–8675 (2014).

    [16] C. Zhu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, High power-high energy sodium battery based on threefold interpenetrating network. Adv. Mater. 28, 2409–2416 (2016).

    [17] Y. Zhang, H. Zhao, Y. Du, Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage. J. Mater. Chem. A 4, 7155–7159 (2016).

    [18] D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik et al., Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat. Commun. 8, 15888 (2017).

    [19] H. Wang, C. Chen, C. Qian, C. Liang, Z. Lin, Symmetric sodium-ion batteries based on the phosphate material of NASICON-structured Na3Co0.5Mn0.5Ti(PO4)3. RSC Adv. 7, 33273–33277 (2017).

    [20] W. Wang, Q. Xu, H. Liu, Y. Wang, Y. Xia, A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3. J. Mater. Chem. A 5, 8440–8450 (2017).

    [21] Y. Yao, L. Zhang, Y. Gao, G. Chen, C. Wang et al., Assembly of Na3V2(PO4)2F3@C nanoparticles in reduced graphene oxide enabling superior Na+ storage for symmetric sodium batteries. RSC Adv. 8, 2958–2962 (2018).

    [22] X. Yao, Z. Zhu, Q. Li, X. Wang, X. Xu et al., 3.0 V high energy density symmetric sodium-ion battery: Na4V2(PO4)3∥Na3V2(PO4)3. ACS Appl. Mater. Interfaces 10, 10022–10028 (2018).

    [23] R. Ling, S. Cai, D. Xie, X. Li, M. Wang et al., Three-dimensional hierarchical porous Na3V2(PO4)3/C structure with high rate capability and cycling stability for sodium-ion batteries. Chem. Eng. J. 353, 264–272 (2018).

    [24] M. Li, Z. Zuo, J. Deng, Q. Yao, Z. Wang et al., A high rate capability and long lifespan symmetric sodium-ion battery system based on a bipolar material Na2LiV2(PO4)3/C. J. Mater. Chem. A 6, 9962–9970 (2018).

    [25] N. Voronina, J.H. Jo, J.U. Choi, C.-H. Jo, J. Kim et al., Nb-Doped titanium phosphate for sodium storage: electrochemical performance and structural insights. J. Mater. Chem. A 7, 5748–5759 (2019).

    [26] P.N. Didwal, R. Verma, C.-W. Min, C.-J. Park, Synthesis of 3-dimensional interconnected porous Na3V2(PO4)3@C composite as a high-performance dual electrode for Na-ion batteries. J. Power. Sources 413, 1–10 (2019).

    [27] Y. Zhao, X. Gao, H. Gao, H. Jin, J.B. Goodenough, Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv. Funct. Mater. 30, 1908680 (2020).

    [28] Y. Zhou, X. Shao, K.-H. Lam, Y. Zheng, L. Zhao et al., Symmetric sodium-ion battery based on dual-electron reactions of NASICON-structured Na3MnTi(PO4)3 material. ACS Appl. Mater. Interfaces 12, 30328–30335 (2020).

    [29] R. Ling, B. Cao, W. Qi, C. Yang, K. Shen et al., Three-dimensional Na3V2(PO4)3@carbon/N-doped graphene aerogel: a versatile cathode and anode host material with high-rate and ultralong-life for sodium storage. J. Alloy. Compd. 869, 159307 (2021).

    [30] Q. Zhou, L. Wang, W. Li, S. Zeng, K. Zhao et al., Carbon-decorated Na3V2(PO4)3 as ultralong lifespan cathodes for high-energy-density symmetric sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 25036–25043 (2021).

    [31] A. Gilankar, A. Mitra, J. Singh, S. Das, S.B. Majumder, Investigations on different strategies towards improving the electrochemical properties of Na2VTi (PO4)3 for symmetrical sodium-ion batteries. J. Alloy. Compd. 851, 156813 (2021).

    [32] H. Li, W. Zhang, Z. Han, K. Sun, C. Gao et al., Pseudocapacitance enhanced by N-defects in Na3MnTi(PO4)3/N-doped carbon composite for symmetric full sodium-ion batteries. Mater. Today Energy 21, 100754 (2021).

    [33] J. Cheng, Y. Chen, S. Sun, Z. Tian, C. Wang et al., Boosting the rate capability and cycle life of Zr-substituted Na3V2(PO4)3/C enwrapped on carbon nanotubes for symmetric Na-ion batteries. Electrochim. Acta 385, 138427 (2021).

    [34] R. Thangavel, D. Han, B. Moorthy, B.K. Ganesan, M. Moorthy et al., Understanding the structural phase transitions in Na3V2(PO4)3 symmetrical sodium-ion batteries using synchrotron-based X-ray techniques. Small Methods 6, e2100888 (2022).

    [35] Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz et al., Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells. J. Mater. Chem. A 7, 7766–7776 (2019).

    [36] S. Bag, C. Zhou, S. Reid, S. Butler, V. Thangadurai, Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J. Power. Sources 454, 227954 (2020).

    [37] Y. Wang, Z. Wang, J. Sun, F. Zheng, M. Kotobuki et al., Flexible, stable, fast-ion-conducting composite electrolyte composed of nanostructured Na-super-ion-conductor framework and continuous Poly(ethylene oxide) for all-solid-state Na battery. J. Power. Sources 454, 227949 (2020).

    [38] X. Xu, Y. Wang, Q. Yi, X. Wang, R.A. Paredes, Camacho et al., Ion conduction in composite polymer electrolytes: potential electrolytes for sodium-ion batteries. Chemsuschem 16, e202202152 (2023).

    [39] Y. Wang, Z. Wang, F. Zheng, J. Sun, J.A.S. Oh et al., Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery. Adv. Sci. 9, e2105849 (2022).

    [40] P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 26, 376–385 (1930).

    [41] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).

    [42] J.A.S. Oh, H. He, J. Sun, X. Cao, B. Chua et al., Dual-nitrogen-doped carbon decorated on Na3V2(PO4)3 to stabilize the intercalation of three sodium ions. ACS Appl. Energy Mater. 3, 6870–6879 (2020).

    [43] J. Sun, H. Ye, J.A.S. Oh, A. Plewa, Y. Sun et al., Elevating the discharge plateau of Prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance. Energy Storage Mater. 43, 182–189 (2021).

    [44] M. Li, G. Lu, W. Zheng, Q. Zhao, Z. Li et al., Multifunctionalized safe separator toward practical sodium-metal batteries with high-performance under high mass loading. Adv. Funct. Mater. 33, 2214759 (2023).

    [45] Z. Jian, C. Yuan, W. Han, X. Lu, L. Gu et al., Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014).

    [46] J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz et al., Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. J. Electrochem. Soc. 159, A952–A960 (2012).

    [47] Z. Cheng, M. Liu, S. Ganapathy, C. Li, Z. Li et al., Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4, 1311–1323 (2020).

    [48] L. Wang, R. Xie, B. Chen, X. Yu, J. Ma et al., In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).

    [49] O. Vendik, I. Vendik, Electromechanical coupling coefficient of isotropic sample with a marked electrostriction. J. Eur. Ceram. Soc. 27, 2949–2952 (2007).

    [50] X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13, 2301746 (2023).

    Yumei Wang, Zhongting Wang, Xiaoyu Xu, Sam Jin An Oh, Jianguo Sun, Feng Zheng, Xiao Lu, Chaohe Xu, Binggong Yan, Guangsheng Huang, Li Lu. Ultra-Stable Sodium-Ion Battery Enabled by All-Solid-State Ferroelectric-Engineered Composite Electrolytes[J]. Nano-Micro Letters, 2024, 16(1): 254
    Download Citation