[1] ARIC A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater, 2005, 4(5): 366-377.
[2] WANG Y G, SONG Y F, XIA Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chem Soc Rev, 2016, 45(21): 5925-5950.
[3] GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices[J]. Chem Soc Rev, 2013, 42(7): 2986-3017.
[4] WANG H L, GAO Q M, JIANG L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors[J]. Small, 2011, 7(17): 2454-2459.
[5] BALAMURUGAN J, NGUYEN T T, ARAVINDAN V, et al. Flexible solid-state asymmetric supercapacitors based on nitrogen-doped graphene encapsulated ternary metal-nitrides with ultralong cycle life[J]. Adv Funct Mater, 2018, 28(44):1804663.
[6] GE P, LI S J, XU L Q, et al. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage[J]. Adv Energy Mater, 2019, 9(1): 1803035.
[7] HU S, JIANG Q Q, DING S P, et al. Construction of hierarchical MoSe2 hollow structures and its effect on electrochemical energy storage and conversion[J]. ACS Appl Mater Interfaces, 2018, 10(30): 25483-25492.
[8] LIU T Z, LI Y P, ZHAO L Z, et al. In situ fabrication of carbon-encapsulated Fe7X8 (X = S, Se) for enhanced sodium storage[J]. ACS Appl Mater Interfaces, 2019, 11(21): 19040-19047.
[9] SAJJAD M, ISMAIL J, SHAH A, et al. Fabrication of 1.6V hybrid supercapacitor developed using MnSe2/rGO positive electrode and phosphine based covalent organic frameworks as a negative electrode enables superb stability up to 28, 000 cycles[J]. J Energy Storage, 2021, 44: 103318.
[10] LV L P, ZHI C W, GAO Y, et al. Hierarchical “tube-on-fiber” carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors[J]. Nanoscale, 2019, 11(29): 13996-14009.
[11] INDRA A, SONG T, PAIK U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage[J]. Adv Mater, 2018, 30(39): 1705146.
[12] LIU X B, LIU Y C, FAN L Z. MOF-derived CoSe2 microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction[J]. J Mater Chem A, 2017, 5(29): 15310-15314.
[13] WANG Q H, GAO F, XU B Y, et al. ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor[J]. Chem Eng J, 2017, 327: 387-396.
[14] YANG K, YAN Y, CHEN W, et al. Yolk-shell bimetallic metal-organic frameworks derived multilayer core-shells NiCo2O4/NiO structure spheres for high-performance supercapacitor[J]. J Electroanal Chem, 2019, 851: 113445.
[15] WANG J Y, WU C, DENG Q L, et al. Highly durable and cycle-stable lithium storage based on MnO nanoparticle-decorated 3D interconnected CNT/graphene architecture[J]. Nanoscale, 2018, 10(27): 13140-13148.
[16] LIU N, PAN Z H, DING X Y, et al. In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors[J]. J Energy Chem, 2020, 41: 209-215.
[17] TANG Y C, ZHAO Z B, HAO X J, et al. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance[J]. J Mater Chem A, 2017, 5(26): 13591-13600.
[18] SHI Q, CHEN Z F, SONG Z W, et al. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors[J]. Angew Chem, 2011, 123(3): 698-701.
[19] ELSONBATY A, HARB M, SOLIMAN M, et al. Metal organic framework/layer double hydroxide/graphene oxide nanocomposite supercapacitor electrode[J]. Appl Phys Lett, 2021, 118(2): 023901.
[20] DU Y Q, LI G Y, CHEN M D, et al. Hollow nickel-cobalt-Manganese hydroxide polyhedra via MOF templates for high-performance quasi-solid-state supercapacitor[J]. Chem Eng J, 2019, 378: 122210.
[21] RANJITH K S, GHOREISHIAN S M, CHODANKAR N R, et al. Mixed metal chalcogenide shell with carbon interlayer wrapped 3D NiCo2O4 nanowire array: A hierarchical self-supported electrode for high-performance supercapacitors[J]. Int J Energy Res, 2022, 46(15): 24286-24300.
[22] ASHOURDAN M, SEMNANI A, HASANPOUR F, et al. Synthesis of nickel cobalt manganese metal organic framework@high quality graphene composites as novel electrode materials for high performance supercapacitors[J]. J Electroanal Chem, 2021, 895: 115452.
[24] TAO K, HAN X, MA Q X, et al. A metal-organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors[J]. Dalton Trans, 2018, 47(10): 3496-3502.
[25] LIU T, LIU J H, ZHANG L Y, et al. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor[J]. J Mater Sci Technol, 2020, 47: 113-121.
[26] LV H H, ZHANG X B, WANG F M, et al. ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors[J]. J Mater Chem A, 2020, 8(28): 14287-14298.
[27] WANG M X, ZENG H Y, ZHANG K, et al. Enhanced supercapacitor performance of ultrathin NiCoMn(OH) nanosheets over NiCo2O4 nanoarray on Ni foam[J]. J Alloys Compd, 2022, 921: 165976.
[28] MA Z L, ZHENG R, LIU Y, et al. Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor[J]. J Colloid Interface Sci, 2021, 602: 627-635.
[29] KULKARNI P, NATARAJ S K, BALAKRISHNA R G, et al. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices[J]. J Mater Chem A, 2017, 5(42): 22040-22094.
[30] HUANG Y Z, QUAN L, LIU T Q, et al. Construction of MOF-derived hollow Ni-Zn-Co-S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density[J]. Nanoscale, 2018, 10(29): 14171-14181.
[31] HOU L R, SHI Y Y, ZHU S Q, et al. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors[J]. J Mater Chem A, 2017, 5(1): 133-144.
[33] WU N S, LOW J, LIU T, et al. Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials[J]. Appl Surf Sci, 2017, 413: 35-40.
[34] JIA H N, WANG Z Y, ZHENG X H, et al. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors[J]. Chem Eng J, 2018, 351: 348-355.
[35] WU L J, LANG J W, WANG S, et al. Study of Ni-dopped MnCo2O4 yolk-shell submicron-spheres with fast Li+ intercalation pseudocapacitance As an anode for high-performance lithium ion batteries[J]. Electrochim Acta, 2016, 203: 128-135.
[36] DU J, ZOU Z H, LIU C, et al. Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction[J]. Nanoscale, 2018, 10(11): 5163-5170.
[37] SAKTHIVEL M, SUKANYA R, CHEN S M, et al. Synthesis and characterization of bimetallic nickel-cobalt chalcogenides (NiCoSe2, NiCo2S4, and NiCo2O4) for non-enzymatic hydrogen peroxide sensor and energy storage: Electrochemical properties dependence on the metal-to-chalcogen composition[J]. Renew Energy, 2019, 138: 139-151.
[38] YUKSEL R, YARAR KAPLAN B, BICER E, et al. All-carbon hybrids for high performance supercapacitors[J]. Int J Energy Res, 2018, 42(11): 3575-3587.
[39] SKUNIK M, CHOJAK M, RUTKOWSKA I A, et al. Improved capacitance characteristics during electrochemical charging of carbon nanotubes modified with polyoxometallate monolayers[J]. Electrochim Acta, 2008, 53(11): 3862-3869.
[40] KANG C X, MA L, CHEN Y C, et al. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors[J]. Chem Eng J, 2022, 427: 131003.
[41] LI C, BALAMURUGAN J, KIM N H, et al. Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors[J]. Adv Energy Mater, 2018, 8(8): 1702014.
[43] TSAI K J, NI C S, CHEN H Y, et al. Single-walled carbon nanotubes/Ni-Co-Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices[J]. J Power Sources, 2020, 454: 227912.
[44] XIONG D K, WANG S C, CHEN C, et al. Rational design of multiple Prussian-blue analogues/NF composites for high-performance surpercapacitors[J]. New J Chem, 2020, 44(25): 10359-10366.
[45] LAN Y, ZHOU J B, XU K L, et al. Synchronous synthesis of Kirkendall effect induced hollow FeSe2/C nanospheres as anodes for high performance sodium ion batteries[J]. Chem Commun, 2018, 54(45): 5704-5707.
[46] CHEN T, LI S Z, WEN J, et al. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution[J]. Small, 2018, 14(5): 1700979.
[47] ZHOU S X, FAN H L, HE F, et al. Role of selenium on the pseudocapacitance of nickel-cobalt selenide[J]. J Energy Storage, 2022, 52: 104832.
[48] QU G M, ZHANG X X, XIANG G T, et al. ZIF-67 derived hollow Ni-Co-Se nano-polyhedrons for flexible hybrid supercapacitors with remarkable electrochemical performances[J]. Chin Chem Lett, 2020, 31(7): 2007-2012.
[49] VIDHYA M S, YUVAKKUMAR R, RAVI G, et al. Hydrothermal synthesis of Cu2Se-CoSe nanograin for electrochemical supercapacitor applications[J].Appl Nanosci, 2021, 11(6): 1881-1888.