[1] GODONE A, MICALIZIO S, LEVI F. Pulsed optically pumped frequency standard[J]. Physical Review A, 2004, 70(2): 023409.
[3] ENGLISH T C, JECHART E, KWON T M. Elimination of the light shift in rubidium gas cell frequency standards using pulsed optical pumping[C]. Tenth Precise Time & Time Interval Applications & Planning Meeting, 1978.
[4] LEVI F, NOVERO C, GODONE A, et al. Analysis of the light shift effect in the 87Rb frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(2): 126-129.
[5] KANG S, GHARAVIPOUR M, AFFOLDERBACH C, et al. Demonstration of a high-performance pulsed optically pumped Rb clock based on a compact magnetron-type microwave cavity [J]. Journal of Applied Physics, 2015, 117(10): 104510.
[6] BARYSHEV V N, ALEYNIKOV M S, OSIPENKO G V, et al. Technique of pulsed optical pumping and pulsed excitation of microwave resonances using the Ramsey scheme in a 87Rb cell with a buffer gas[J]. Quantum Electronics, 2018, 48(5): 443-447.
[7] MONAHAN D M, HUANG M, CAMPARO J C. Simplified Design of a Pulsed Optically-Pumped (POP) Atomic Clock[C]. IEEE International Frequency Control Symposium and European Frequency and Time Forum (IFCS/EFTF), 2019.
[8] MICALIZIO S, CALOSSO C E, GODONE A, et al. Metrological characterization of the pulsed Rb clock with optical detection[J]. Metrologia, 2012, 49(4): 425-436.
[9] AFFOLDERBACH C, ALMAT N, GHARAVIPOUR M, et al, Selected studies on high performance laser-pumped rubidium atomic clocks[C]. IEEE International Frequency Control Symposium(IFCS), 2018.
[10] LIN Hai-xiao, DENG Jian-liao, LIN Jin-da, et al. Frequency stability of a pulsed optically pumped atomic clock with narrow Ramsey linewidth[J]. Applied Optics, 2018, 57(12): 3056.
[11] MUNGALL A G, DAAMS H, BOULANGER J S. Design, construction, and performance of the NRC CsVI primary cesium clocks[J]. Metrologia, 1981, 17(4): 123-145.
[12] GERGINOV V, NEMITZ N, WEYERS S, et al. Uncertainty evaluation of the caesium fountain clock PTB-CSF2[J]. Metrologia, 2010, 47(1): 65-79.
[13] HAO Qiang, XUE Wen-xiang, LI Wen-bing, et al. Microwave pulse-coherent technique based clock with a novel magnetron-type cavity[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(4): 873-878.
[14] GODONE A, MICALIZIO S, CALOSSO C E, et al. The pulsed rubidium clock[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(3): 525-529.
[15] LI Wen-bing, HAO Qiang, DU Yuan-bo, et al. Demonstration of a sub-sampling phase lock loop based microwave source for reducing dick effect in atomic clocks[J]. Chinese Physics Letters, 2019(7): 19-22.
[16] MICALIZIO S, GODONE A, LEVI F, et al. Pulsed optically pumped 87Rb vapor cell frequency standard: A multilevel approach[J]. Physical Review A, 2009, 79(1): 013403.
[17] GHARAVIPOUR M. Ramsey spectroscopy in a rubidium vapor cell and realization of an ultra-stable atomic clock[D]. PhD thesis, Université de Neuchtel, Laboratoire Temps-Fréquence (LTF), 2018.
[18] HORSLEY A,DU G X, PELLATON M, et al. Imaging of relaxation times and microwave field strength in a microfabricated vapor cell[J]. Physical Review A, 2013, 88(6): 063407.
[19] SANTARELLI G, AUDOIN C, MAKDISSI A, et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency, Control, 1998, 45(4): 887-894.