• High Power Laser Science and Engineering
  • Vol. 11, Issue 2, 02000e15 (2023)
C. Bouyer1、*, R. Parreault1, N. Roquin1, J.-Y. Natoli2, and L. Lamaignère1
Author Affiliations
  • 1CEA CESTA, Le Barp, France
  • 2Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
  • show less
    DOI: 10.1017/hpl.2022.41 Cite this Article Set citation alerts
    C. Bouyer, R. Parreault, N. Roquin, J.-Y. Natoli, L. Lamaignère. Impact of temporal modulations on laser-induced damage of fused silica at 351 nm[J]. High Power Laser Science and Engineering, 2023, 11(2): 02000e15 Copy Citation Text show less

    Abstract

    Laser-induced damage (LID) on high-power laser facilities is one of the limiting factors for the increase in power and energy. Inertial confinement fusion (ICF) facilities such as Laser Mégajoule or the National Ignition Facility use spectral broadening of the laser pulse that may induce power modulations because of frequency modulation to amplitude modulation conversion. In this paper, we study the impact of low and fast power modulations of laser pulses both experimentally and numerically. The MELBA experimental testbed was used to shape a wide variety of laser pulses and to study their impact on LID. A 1D Lagrangian hydrodynamic code was used to understand the impact of different power profiles on LID.
    $$\begin{align}P(t)=\frac{P_0(t)}{2}\left(1+\sin \left(\sum \limits_{k=1}^{N_{\mathrm{CH}}}\frac{V_{k}}{V_{\pi, {k}}}\pi \sin \left(2\pi {kf}_0t+{\varphi}_{{k}}\right)\right)\right),\end{align}$$ ((1))

    View in Article

    $$\begin{align}\rho \left({F}_{k}\right)=\frac{N_{\mathrm{dam}}\left({F}_{k}\right)}{S_{\mathrm{px}}{N}_{\mathrm{px}}\left({F}_{k}\right)},\end{align}$$ ((2))

    View in Article

    $$\begin{align}{\tau}_{\mathrm{eff}}=\frac{\int P(t) \mathrm{d}t}{\max P(t)}=\frac{E}{\max P(t)},\end{align}$$ ((3))

    View in Article

    $$\begin{align}\beta =\frac{\max P(t)}{\left\langle P(t)\right\rangle }-1.\end{align}$$ ((4))

    View in Article

    $$\begin{align}{n^{\prime\prime }}(T)=\frac{\lambda }{4\pi }{\alpha}_0\exp \left({\sigma}_0\frac{hf-{E}_\mathrm{g}}{k_\mathrm{B}T}\right),\end{align}$$ ((5))

    View in Article

    $$\begin{align}\varepsilon \left(T,\rho \right)=1+i\frac{\sigma_0\left(T,\rho \right)}{\varepsilon_0\omega }{\left(1-i\frac{\omega {m}_\mathrm{e}{M}_{\mathrm{SiO}_2}{\sigma}_0\left(T,\rho \right)}{N_\mathrm{A}\rho Z\left(T,\rho \right){e}^2}\right)}^{-1}.\end{align}$$ ((6))

    View in Article

    C. Bouyer, R. Parreault, N. Roquin, J.-Y. Natoli, L. Lamaignère. Impact of temporal modulations on laser-induced damage of fused silica at 351 nm[J]. High Power Laser Science and Engineering, 2023, 11(2): 02000e15
    Download Citation