[1] Gao W, Ota H, Kiriya D, Takei K and Javey A 2019 Flexible electronics toward wearable sensing Acc. Chem. Res.52 523–33
[2] Gao Y J, Yu L T, Yeo J C and Lim C T 2020 Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability Adv. Mater.32 1902133
[3] Yin R Y, Wang D P, Zhao S F, Lou Z and Shen G Z 2021 Wearable sensors-enabled human–machine interaction systems: from design to application Adv. Funct. Mater.31 2008936
[4] Corzo D, Tostado-Blzquez G and Baran D 2020 Flexible electronics: status, challenges and opportunities Front. Electron.1 594003
[5] Bringans R D and Veres J 2016. Challenges and opportunities in flexible electronics 2016 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) pp 6.4.1–2
[6] Guo J H, Yu Y R, Cai L J, Wang Y, Shi K Q, Shang L R, Pan J Y and Zhao Y J 2021 Microfluidics for flexible electronics Mater. Today44 105–35
[7] Khan Y, Ostfeld A E, Lochner C M, Pierre A and Arias A C 2016 Monitoring of vital signs with flexible and wearable medical devices Adv. Mater.28 4373–95
[8] Das T K and Prusty S 2012 Review on conducting polymers and their applications Polym. Plast. Technol. Eng.51 1487–500
[9] Wang C L, Dong H L, Jiang L and Hu W P 2018 Organic semiconductor crystals Chem. Soc. Rev.47 422–500
[10] Usman M, Mendiratta S and Lu K L 2017 Semiconductor metal–organic frameworks: future low-bandgap materials Adv. Mater.29 1605071
[11] Campbell M G and Dinc˘a M 2017 Metal–organic frameworks as active materials in electronic sensor devices Sensors17 1108
[12] Jung H S and Park N G 2015 Perovskite solar cells: from materials to devices Small11 10–25
[13] Green M A, Ho-Baillie A and Snaith H J 2014 The emergence of perovskite solar cells Nat. Photon.8 506–14
[14] Lewis J 2006 Material challenge for flexible organic devices Mater. Today9 38–45
[15] Pan T, Liu S H, Zhang L T and Xie W F 2022 Flexible organic optoelectronic devices on paper iScience25 103782
[16] Carey T et al 2023 High-mobility flexible transistors with low-temperature solution-processed tungsten dichalcogenides ACS Nano17 2912–22
[17] Bretos I, Jimnez R, Wu A Y, Kingon A I, Vilarinho P M and Calzada M L 2014 Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics Adv. Mater.26 1405–9
[18] Shi R J, Jiao S L, Yue Q Q, Gu G Q, Zhang K and Zhao Y 2022 Challenges and advances of organic electrode materials for sustainable secondary batteries Exploration2 20220066
[19] Ling H F, Liu S H, Zheng Z J and Yan F 2018 Organic flexible electronics Small Methods2 1800070
[20] Allen M J, Tung V C and Kaner R B 2010 Honeycomb carbon: a review of graphene Chem. Rev.110 132–45
[21] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Mechanical properties of graphene and boronitrene Phys. Rev. B 85 125428
[22] Mecklenburg M and Regan B C 2011 Spin and the honeycomb lattice: lessons from graphene Phys. Rev. Lett.106 116803
[23] Sun D M, Liu C, Ren W C and Cheng H M 2013 A review of carbon nanotube- and graphene-based flexible thin-film transistors Small9 1188–205
[24] Schwierz F 2013 Graphene transistors: status, prospects, and problems Proc. IEEE101 1567–84
[25] Schwierz F 2010 Graphene transistors Nat. Nanotechnol.5 487–96
[26] Sang M Y, Shin J, Kim K and Yu K J 2019 Electronic and thermal properties of graphene and recent advances in graphene based electronics applications Nanomaterials9 374
[27] Del Alamo J A 2011 Nanometre-scale electronics with III–V compound semiconductors Nature479 317–23
[28] Li T K, Mastro M and Dadgar A 2010 III–V Compound Semiconductors: Integration with Silicon-based Microelectronics (CRC Press)
[29] Jo J W, Kang S H, Heo J S, Kim Y H and Park S K 2020 Flexible metal oxide semiconductor devices made by solution methods Chem. Eur. J.26 9126–56
[30] Thomas S R, Pattanasattayavong P and Anthopoulos T D 2013 Solution-processable metal oxide semiconductors for thin-film transistor applications Chem. Soc. Rev.42 6910–23
[31] Tilli M and Haapalinna A 2020 Properties of silicon Handbook of Silicon Based MEMS Materials and Technologies 3rd edn, ed M Tilli, M Paulasto-Krockel, M Petzold, H Theuss, T Motooka and V Lindroos (Elsevier) pp 3–17
[32] Tsuchiya T 2008 Silicon and related materials Comprehensive Microsystems ed Y B Gianchandani, O Tabata and H Zappe (Elsevier) pp 1–23
[33] Rogers J A, Lagally M G and Nuzzo R G 2011 Synthesis, assembly and applications of semiconductor nanomembranes Nature477 45–53
[34] Baca A J, Meitl M A, Ko H C, Mack S, Kim H S, Dong K J, Ferreira P M and Rogers J A 2007 Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers Adv. Funct. Mater.17 3051–62
[35] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol.7 699–712
[36] Joseph S, Mohan J, Lakshmy S, Thomas S, Chakraborty B, Thomas S and Kalarikkal N 2023 A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures Mater. Chem. Phys.297 127332
[37] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 2D transition metal dichalcogenides Nat. Rev. Mater.2 17033
[38] Vidor F F, Meyers T and Hilleringmann U 2015 Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors Electronics4 480–506
[39] Lee J S, Kovalenko M V, Huang J, Chung D S and Talapin D V 2011 Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays Nat. Nanotechnol.6 348–52
[40] Liu Z, Xu J, Chen D and Shen G Z 2015 Flexible electronics based on inorganic nanowires Chem. Soc. Rev.44 161–92
[41] Zavabeti A, Jannat A, Zhong L, Haidry A A, Yao Z J and Ou J Z 2020 Two-dimensional materials in large-areas: synthesis, properties and applications Nano-Micro Lett.12 66
[42] Zhang K X, Zhang L B, Han L, Wang L, Chen Z Q Z, Xing H Z and Chen X S 2021 Recent progress and challenges based on two-dimensional material photodetectors Nano Express2 012001
[43] Mokkapati S and Jagadish C 2009 III–V compound SC for optoelectronic devices Mater. Today12 22–32
[44] Park J S, Tang M C, Chen S M and Liu H Y 2020 Heteroepitaxial growth of III–V semiconductors on silicon Crystals10 1163
[45] Gupta S, Navaraj W T, Lorenzelli L and Dahiya R 2018 Ultra-thin chips for high-performance flexible electronics npj Flex. Electron.2 8
[46] Lee J Y et al 2023 Ultrathin crystalline silicon nano and micro membranes with high areal density for low-cost flexible electronics Small19 2302597
[47] Yu K J, Yan Z, Han M D and Rogers J A 2017 Inorganic semiconducting materials for flexible and stretchable electronics npj Flex. Electron.1 4
[48] Deng R, Chang N L, Ouyang Z and Chong C M 2019 A techno-economic review of silicon photovoltaic module recycling Renew. Sustain. Energy Rev.109 532–50
[49] Kim D E and Sung I H 2013 Lithography Encyclopedia of Tribology ed Q J Wang and Y W Chung (Springer) pp 1994–2007
[50] Vladimirsky Y 1999 Lithography Vacuum Ultraviolet Spectroscopy: Experimental Methods in Physical Sciences ed J A R Samson and D L Ederer (Academic) pp 205–23
[51] Sun Y and Rogers J A 2007 Inorganic semiconductors for flexible electronics Adv. Mater.19 1897–916
[52] Chang T C, Tsao Y C, Chen P H, Tai M C, Huang S P, Su W C and Chen G F 2020 Flexible low-temperature polycrystalline silicon thin-film transistors Mater. Today Adv.5 100040
[53] Heremans P, Tripathi A K, de Jamblinne de Meux A, Smits E C P, Hou B, Pourtois G and Gelinck G H 2016 Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications Adv. Mater.28 4266–82
[54] Li S S and Thurber W R 1977 The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon Solid-State Electron.20 609–16
[55] Fortunato E, Barquinha P and Martins R 2012 Oxide semiconductor thin-film transistors: a review of recent advances Adv. Mater.24 2945–86
[56] Jeong S and Moon J 2012 Low-temperature, solution-processed metal oxide thin film transistors J. Mater. Chem.22 1243–50
[57] Borkar S and Chien A A 2011 The future of microprocessors Commun. ACM54 67–77
[58] Bohr M 2007 A 30 year retrospective on Dennard's MOSFET scaling paper IEEE J. Solid-State Circuits12 11–13
[59] Skotnicki T, Hutchby J A, King T J, Wong H S P and Boeuf F 2005 The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance IEEE Circuits Devices Mag.21 16–26
[60] Haensch W, Nowak E J, Dennard R H, Solomon P M, Bryant A, Dokumaci O H, Kumar A, Wang X, Johnson J B and Fischetti M V 2006 Silicon CMOS devices beyond scaling IBM J. Res. Dev.50 339–61
[61] Ito T and Okazaki S 2000 Pushing the limits of lithography Nature406 1027–31
[62] Schaller R R 1997 Moore's law: past, present and future IEEE spectrum34 52–59
[63] Thompson S E and Parthasarathy S 2006 Moore's law: the future of Si microelectronics Mater. Today9 20–25
[64] Abe H, Kato H and Baba T 2011 Specific heat capacity measurement of single-crystalline silicon as new reference material Jpn. J. Appl. Phys.50 11RG01
[65] Rostami A, Heidarzadeh H, Baghban H, Dolatyari M and Rasooli H 2013 Thermal stability analysis of concentrating single-junction silicon and SiC-based solar cells J. Optoelectron. Adv. Mater.15 1–3
[66] Sekitani T and Someya T 2010 Stretchable, large-area organic electronics Adv. Mater.22 2228–46
[67] Zumeit A, Dahiya A S, Christou A, Shakthivel D and Dahiya R 2021 Direct roll transfer printed silicon nanoribbon arrays based high-performance flexible electronics npj Flex. Electron.5 18
[68] Ghoneim M T, Kutbee A, Ghodsi Nasseri F, Bersuker G and Hussain M M 2014 Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric Appl. Phys. Lett.104 234104
[69] Wolfstirn K B 1960 Hole and electron mobilities in doped silicon from radiochemical and conductivity measurements J. Phys. Chem. Solids16 279–84
[70] Backenstoss G 1957 Conductivity mobilities of electrons and holes in heavily doped silicon Phys. Rev.108 1416–9
[71] Nakatsugawa H, Okamoto Y, Kawahara T and Yamaguchi S 2014 Electric current dependence of a self-cooling device consisting of silicon wafers connected to a power MOSFET J. Electron. Mater.43 1757–67
[72] Peng F, Su Y Y, Zhong Y L, Fan C H, Lee S T and He Y 2014 Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy Acc. Chem. Res.47 612–23
[73] Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N and Sailor M J 2009 Biodegradable luminescent porous silicon nanoparticles for in vivo applications Nat. Mater.8 331–6
[74] Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F and Wang Z L 2018 Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing Nat. Commun.9 244
[75] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature529 509–14
[76] Chung H U et al 2019 Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care Science363 eaau0780
[77] Sang M Y et al 2022 Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision Adv. Mater.34 2105865
[78] Cho Y U et al 2022 Ultra-low cost, facile fabrication of transparent neural electrode array for electrocorticography with photoelectric artifact-free optogenetics Adv. Funct. Mater.32 2105568
[79] Lee J Y et al 2022 Foldable three dimensional neural electrode arrays for simultaneous brain interfacing of cortical surface and intracortical multilayers npj Flex. Electron.6 86
[80] Park J et al 2023 A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations Sci. Adv.9 eadi8918
[81] Kim K et al 2023 Fully implantable and battery-free wireless optoelectronic system for modulable cancer therapy and real-time monitoring npj Flex. Electron.7 41
[82] Yu H W, Li H, Sun X D and Pan L J 2023 Biomimetic flexible sensors and their applications in human health detection Biomimetics8 293
[83] Li H, Yu H W, Wu D, Sun X D and Pan L J 2023 Recent advances in bioinspired vision sensor arrays based on advanced optoelectronic materials APL Mater.11 080601
[84] Zhang K et al 2017 Origami silicon optoelectronics for hemispherical electronic eye systems Nat. Commun.8 1782
[85] Wang W C et al 2023 Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin Science380 735–42
[86] Shen Z Q, Zhang Z L, Zhang N B, Li J H, Zhou P W, Hu F Q, Rong Y, Lu B Y and Gu G Y 2022 High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines Adv. Mater.34 2203650
[87] Hegde C, Su J T, Tan J M R, He K, Chen X D and Magdassi S 2023 Sensing in soft robotics ACS Nano17 15277–307
[88] Li L R D et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy7 708–17
[89] Kim T S, Kim H J, Han J H, Choi W J and Yu K J 2022 Flexible InGaP/GaAs tandem solar cells encapsulated with ultrathin thermally grown silicon dioxide as a permanent water barrier and an antireflection coating ACS Appl. Energy Mater.5 227–33
[90] Gao L, Chao L F, Hou M H, Liang J, Chen Y H, Yu H D and Huang W 2019 Flexible, transparent nanocellulose paper-based perovskite solar cells npj Flex. Electron.3 4
[91] Wei D et al 2022 Ultra-flexible and foldable gel polymer lithium–ion batteries enabling scalable production Mater. Today Energy23 100889
[92] Gao R H et al 2022 Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries Adv. Funct. Mater.32 2110313
[93] Hong S, Lee J, Do K, Lee M, Kim J H, Lee S and Kim D H 2017 Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices Adv. Funct. Mater.27 1704353
[94] Cheng Y, Zhu W D, Lu X F and Wang C 2022 Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing Nano Energy98 107229
[95] Kang H 2021 Crystalline silicon vs. amorphous silicon: the significance of structural differences in photovoltaic applications IOP Conf. Ser.: Earth Environ. Sci.726 012001
[96] Karakosta C, Pappas C, Marinakis V and Psarras J 2013 Renewable energy and nuclear power towards sustainable development: characteristics and prospects Renew. Sustain. Energy Rev.22 187–97
[97] Pedersen A, Pizzagalli L and Jnsson H 2017 Optimal atomic structure of amorphous silicon obtained from density functional theory calculations New J. Phys.19 063018
[98] Elbrecht L and Binder J 1999 The mechanical properties of thin polycrystalline silicon films as function of deposition and doping conditions Sens. Mater.11 163–79
[99] Amus M and Altenbach H 2023 Elastic properties of polycrystalline silicon: experimental findings, effective estimates, and their relations Continuum Mech. Thermodyn.35 595–624
[100] Allred C L, Yuan X L, Bazant M Z and Hobbs L W 2004 Elastic constants of defected and amorphous silicon with the environment-dependent interatomic potential Phys. Rev. B 70 134113
[101] Gaspar J, Paul O, Chu V and Joao P C 2007 Mechanical properties and reliability of amorphous vs. polycrystalline silicon thin films MRS Online Proc. Lib.1066 10661504
[102] Masolin A, Bouchard P O, Martini R and Bernacki M 2013 Thermo-mechanical and fracture properties in single-crystal silicon J. Mater. Sci.48 979–88
[103] Treacy M M J and Borisenko K B 2012 The local structure of amorphous silicon Science335 950–3
[104] Fisher G, Seacrist M R and Standley R W 2012 Silicon crystal growth and wafer technologies Proc. IEEE100 1454–74
[105] Chae J H, Lee J Y and Kang S W 1999 Measurement of thermal expansion coefficient of poly-Si using microgauge sensors Sens. Actuators A 75 222–9
[106] Chen B W et al 2017 Surface engineering of polycrystalline silicon for long-term mechanical stress endurance enhancement in flexible low-temperature poly-Si thin-film transistors ACS Appl. Mater. Interfaces9 11942–9
[107] Yokota T et al 2020 A conformable imager for biometric authentication and vital sign measurement Nat. Electron.3 113–21
[108] Gao X Y, Lin L, Liu Y C and Huang X Q 2015 LTPS TFT process on polyimide substrate for flexible AMOLED J. Disp. Technol.11 666–9
[109] Caro M A 2023 Machine learning based modeling of disordered elemental semiconductors: understanding the atomic structure of a-Si and a-C Semicond. Sci. Technol.38 043001
[110] Deringer V L, Bernstein N, Bartk A P, Cliffe M J, Kerber R N, Marbella L E, Grey C P, Elliott S R and Csnyi G 2018 Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics J. Phys. Chem. Lett.9 2879–85
[111] Juka G, Koka J, Arlauskas K and Jukonis G 1990 Electron drift mobility in a-Si:H under extremely high electric field Solid State Commun.75 531–3
[112] von Roedern B 2004 Photovoltaic materials, physics of Encyclopedia of Energy ed C J Cleveland (Elsevier) pp 47–59
[113] Du M C, Jia R, Li X, Zheng X H, Gao Z B, Chen J W, Qiu P, Liu H, Yang J and Kong D L 2023 Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells Sol. Energy Mater. Sol. Cells262 112555
[114] Zhang C et al 2017 Efficient and flexible thin film amorphous silicon solar cells on nanotextured polymer substrate using sol–gel based nanoimprinting method Adv. Funct. Mater.27 1604720
[115] Choi S W, Park J H, Seo J W, Mun C, Kim Y, Song P, Shin M and Kwon J D 2023 Flexible and transparent thin-film light-scattering photovoltaics about fabrication and optimization for bifacial operation npj Flex. Electron.7 17
[116] Yi C H, Li W M, Shi S, He K, Ma P C, Chen M and Yang C L 2020 High-temperature-resistant and colorless polyimide: preparations, properties, and applications Sol. Energy195 340–54
[117] You B H, Lee B J, Han S Y, Takahashi S, Berkeley B H, Kim N D and Kim S S 2009 Touch-screen panel integrated into 12.1-in. a-Si:H TFT-LCD J. Soc. Inf. Disp.17 87–94
[118] Sarma K R 2009 Amorphous silicon: flexible backplane and display application Flexible Electronics: Materials and Applications ed W S Wong and A Salleo (Springer) pp 75–106
[119] Wang P P, Hu M M, Wang H, Chen Z, Feng Y P, Wang J Q, Ling W and Huang Y 2020 The evolution of flexible electronics: from nature, beyond nature, and to nature Adv. Sci.7 2001116
[120] Song Y M et al 2013 Digital cameras with designs inspired by the arthropod eye Nature497 95–99
[121] Lee Y K et al 2017 Chemical sensing systems that utilize soft electronics on thin elastomeric substrates with open cellular designs Adv. Funct. Mater.27 1605476
[122] Truong T A et al 2023 Engineering route for stretchable, 3D microarchitectures of wide bandgap semiconductors for biomedical applications Adv. Funct. Mater.33 2211781
[123] Kim D H et al 2011 Epidermal electronics Science333 838–43
[124] Kim T et al 2022 Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces Nat. Commun.13 5815
[125] Sang M Y, Kim K, Shin J and Yu K J 2022 Ultra-thin flexible encapsulating materials for soft bio-integrated electronics Adv. Sci.9 2202980
[126] Webb R C et al 2013 Ultrathin conformal devices for precise and continuous thermal characterization of human skin Nat. Mater.12 938–44
[127] Song E M et al 2019 Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration Proc. Natl Acad. Sci. USA116 15398–406
[128] Fang H et al 2016 Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems Proc. Natl Acad. Sci. USA113 11682–7
[129] Song E M et al 2018 Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems ACS Nano12 10317–26
[130] Logothetidis S 2008 Flexible organic electronic devices: materials, process and applications Mater. Sci. Eng.152 96–104
[131] Park J, Heo S, Park K, Song M H, Kim J Y, Kyung G, Ruoff R S, Park J U and Bien F 2017 Research on flexible display at Ulsan national institute of science and technology npj Flex. Electron.1 9
[132] Liu K, Ouyang B, Guo X J, Guo Y L and Liu Y Q 2022 Advances in flexible organic field-effect transistors and their applications for flexible electronics npj Flex. Electron.6 1
[133] Zumeit A, Dahiya A S, Christou A and Dahiya R 2022 High-performance p-channel transistors on flexible substrate using direct roll transfer stamping Jpn. J. Appl. Phys.61 SC1042
[134] Arjmand T, Legallais M, Nguyen T T T, Serre P, Vallejo-Perez M, Morisot F, Salem B and Ternon C 2022 Functional devices from bottom-up silicon nanowires: a review Nanomaterials12 1043
[135] Biswas A, Bayer I S, Biris A S, Wang T, Dervishi E and Faupel F 2012 Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects Adv. Colloid Interface Sci.170 2–27
[136] Sun Y, Khang D Y, Hua F, Hurley K, Nuzzo R G and Rogers J A 2005 Photolithographic route to the fabrication of micro/nanowires of III–V semiconductors Adv. Funct. Mater.15 30–40
[137] Pennelli G 2015 Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives Eur. Phys. J. B 88 121
[138] Sun Y G, Kim H S, Menard E, Kim S, Adesida I and Rogers J A 2006 Printed arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on plastic substrates Small2 1330–4
[139] Mack S, Meitl M A, Baca A J, Zhu Z T and Rogers J A 2006 Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers Appl. Phys. Lett.88 213101
[140] Sun Y G and Rogers J A 2004 Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates Nano Lett.4 1953–9
[141] Chang H K, Wang X L, Aroonyadet N, Zhang R, Song Y, Datar R, Cote R, Thompson M and Zhou C W 2013 Top-down fabricated polysilicon nanoribbon biosensor chips for cancer diagnosis MRS Online Proc. Lib.1569 213–8
[142] Fu X X, Cai J X, Zhang X, Li W D, Ge H X and Hu Y 2018 Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications Adv. Drug Deliv. Rev.132 169–87
[143] Za'bah N F, Kwa K S K, Bowen L, Mendis B and O'Neill A 2012 Top-down fabrication of single crystal silicon nanowire using optical lithography J. Appl. Phys.112 024309
[144] Viventi J et al 2011 Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo Nat. Neurosci.14 1599–605
[145] Kim J et al 2014 Stretchable silicon nanoribbon electronics for skin prosthesis Nat. Commun.5 5747
[146] Yu K J et al 2016 Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex Nat. Mater.15 782–91
[147] Ko G et al 2020 Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants NPG Asia Mater.12 71
[148] McAlpine M C, Ahmad H, Wang D W and Heath J R 2007 Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors Nat. Mater.6 379–84
[149] Kang K, Sang M Y, Xu B X and Yu K J 2023 Fabrication of gold-doped crystalline-silicon nanomembrane-based wearable temperature sensor STAR Protocols4 101925
[150] Ko H C, Baca A J and Rogers J A 2006 Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers Nano Lett.6 2318–24
[151] Baca A J et al 2010 Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs Energy Environ. Sci.3 208–11
[152] Kim T I, Hwan Jung Y, Chung H J, Jun Yu K, Ahmed N, Corcoran C J, Suk Park J, Hun Jin S and Rogers J A 2013 Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers Appl. Phys. Lett.102 182104
[153] Yoon J et al 2008 Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs Nat. Mater.7 907–15
[154] Kim C, Ahn H and Ji T 2020 Flexible pressure sensors based on silicon nanowire array built by metal-assisted chemical etching IEEE Electron Device Lett.41 1233–6
[155] Qi Y Y, Wang Z, Zhang M L, Yang F H and Wang X D 2013 A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching J. Phys. Chem. C 117 25090–6
[156] Han H, Huang Z P and Lee W 2014 Metal-assisted chemical etching of silicon and nanotechnology applications Nano Today9 271–304
[157] Sharma M, Pudasaini P R, Ruiz-Zepeda F, Elam D and Ayon A A 2014 Ultrathin, flexible organic–inorganic hybrid solar cells based on silicon nanowires and PEDOT: PSS ACS Appl. Mater. Interfaces6 4356–63
[158] Mizushima I, Sato T, Taniguchi S and Tsunashima Y 2000 Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure Appl. Phys. Lett.77 3290–2
[159] Depauw V, Qiu Y, Van Nieuwenhuysen K, Gordon I and Poortmans J 2011 Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells Prog. Photovolt., Res. Appl.19 844–50
[160] Sudoh K, Hiruta R and Kuribayashi H 2013 Shape evolution of high aspect ratio holes on Si(001) during hydrogen annealing J. Appl. Phys.114 183512
[161] Sudoh K, Iwasaki H, Hiruta R, Kuribayashi H and Shimizu R 2009 Void shape evolution and formation of silicon-on-nothing structures during hydrogen annealing of hole arrays on Si (001) J. Appl. Phys.105 083536
[162] Bedell S W, Shahrjerdi D, Hekmatshoar B, Fogel K, Lauro P A, Ott J A, Sosa N and Sadana D 2012 Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies IEEE J. Photovolt.2 141–7
[163] Saha S et al 2013 Single heterojunction solar cells on exfoliated flexible 25 m thick mono-crystalline silicon substrates Appl. Phys. Lett.102 163904
[164] Martini R, Gonzalez M, Dross F, Masolin A, Vaes J, Frederickx D and Poortmans J 2012 Epoxy-induced spalling of silicon Energy Proc.27 567–72
[165] Bedell S W, Fogel K, Lauro P, Shahrjerdi D, Ott J A and Sadana D 2013 Layer transfer by controlled spalling J. Phys. D: Appl. Phys.46 152002
[166] Zhai Y J, Mathew L, Rao R, Xu D W and Banerjee S K 2012 High-performance flexible thin-film transistors exfoliated from bulk wafer Nano Lett.12 5609–15
[167] Lasky J B, Stiffler S R, White F R and Abernathey J R 1985 Silicon-on-insulator (SOI) by bonding and ETCH-back 1985 Int. Electron Devices Meeting (IEEE) pp 684–7
[168] Liang H M, Liu M F, Liu S, Xu D H and Xiong B 2018 The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication J. Micromech. Microeng.28 015005
[169] Baraban L, Ibarlucea B, Baek E and Cuniberti G 2019 Hybrid silicon nanowire devices and their functional diversity Adv. Sci.6 1900522
[170] Muroi M, Otani M and Habuka H 2021 Boron-silicon film chemical vapor deposition using boron trichloride, dichlorosilane and monomethylsilane gases ECS J. Solid State Sci. Technol.10 064006
[171] Behroudj A, Geiger D and Strehle S 2019 Epitaxial bottom-up growth of silicon nanowires on oxidized silicon by alloy-catalyzed gas-phase synthesis Nano Lett.19 7895–900
[172] Yu J L, Yang J, Feng X J, Jia H, Wang J L and Lu W 2014 Uniform carbon coating on silicon nanoparticles by dynamic CVD process for electrochemical lithium storage Ind. Eng. Chem. Res.53 12697–704
[173] Gao Y et al 2016 High-performance flexible thin-film transistors based on single-crystal-like silicon epitaxially grown on metal tape by roll-to-roll continuous deposition process ACS Appl. Mater. Interfaces8 29565–72
[174] Song X P et al 2022 Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates Adv. Sci.9 2105623
[175] Liu W Z et al 2023 Flexible solar cells based on foldable silicon wafers with blunted edges Nature617 717–23
[176] Liu X H, Zhang J, Si W P, Xi L X, Eichler B, Yan C L and Schmidt O G 2015 Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life ACS Nano9 1198–205
[177] Wu Z Z, Li C Y, Hartings J A, Narayan R and Ahn C 2016 Polysilicon thin film developed on flexible polyimide for biomedical applications J. Microelectromech. Syst.25 585–92
[178] Wu Z Z, Li C Y, Hartings J, Ghosh S, Narayan R and Ahn C 2017 Polysilicon-based flexible temperature sensor for brain monitoring with high spatial resolution J. Micromech. Microeng.27 025001
[179] Wu Z Z and Ahn C H 2017 A wearable pressure and temperature sensor array using polysilicon thin film on polyimide 2017 19th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE) pp 1025–8
[180] Misra S, Yu L W, Chen W H, Foldyna M and Cabarrocas P R I 2014 A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells J. Phys. D: Appl. Phys.47 393001
[181] Ni L, Jacques E, Rogel R, Salan A C, Pichon L and Wenga G 2012 VLS silicon nanowires based resistors for chemical sensor applications Proc. Eng.47 240–3
[182] Puglisi R A, Bongiorno C, Caccamo S, Fazio E, Mannino G, Neri F, Scalese S, Spucches D and La Magna A 2019 Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm ACS Omega4 17967–71
[183] Moiz S A, Alahmadi A N M and Aljohani A J 2020 Design of silicon nanowire array for PEDOT: PSS-silicon nanowire-based hybrid solar cell Energies13 3797
[184] Verhaverbeke S, Teerlinck I, Vinckier C, Stevens G, Cartuyvels R and Heyns M M 1994 The etching mechanisms of SiO2 in hydrofluoric acid J. Electrochem. Soc.141 2852–7
[185] Fahey P M, Griffin P B and Plummer J D 1989 Point defects and dopant diffusion in silicon Rev. Mod. Phys.61 289–384
[186] Mathiot D and Pfister J C 1984 Dopant diffusion in silicon: a consistent view involving nonequilibrium defects J. Appl. Phys.55 3518–30
[187] Barri C et al 2021 Engineering of the spin on dopant process on silicon on insulator substrate Nanotechnology32 025303
[188] Slaoui A, Hartiti B, Muller J C, Stuck R, Loghmarti M and Siffert P 1991 Rapid thermal diffusion of phosphorus into silicon from doped oxide films (solar cell manufacture) Proc. 22nd IEEE Photovoltaic Specialists Con. (IEEE) pp 445–9
[189] Huang Y X et al 2023 Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities Nat. Biomed. Eng.7 486–98
[190] Hernandez H L et al 2014 Triggered transience of metastable poly(phthalaldehyde) for transient electronics Adv. Mater.26 7637–42
[191] Chen Y, Li H and Li M 2012 Flexible and tunable silicon photonic circuits on plastic substrates Sci. Rep.2 622
[192] Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G and Rogers J A 2006 Transfer printing by kinetic control of adhesion to an elastomeric stamp Nat. Mater.5 33–38
[193] Hsia K J, Huang Y, Menard E, Park J U, Zhou W, Rogers J and Fulton J M 2005 Collapse of stamps for soft lithography due to interfacial adhesion Appl. Phys. Lett.86 154106
[194] Huang Y Y, Zhou W X, Hsia K J, Menard E, Park J U, Rogers J A and Alleyne A G 2005 Stamp collapse in soft lithography Langmuir21 8058–68
[195] Roberts A D 1979 Looking at rubber adhesion Rubber Chem. Technol.52 23–42
[196] Hunter K H, Rodriguez J M G and Becker N M 2022 A review of research on the teaching and learning of chemical bonding J. Chem. Educ.99 2451–64
[197] Schn C F, van Bergerem S, Mattes C, Yadav A, Grohe M, Kobbelt L and Wuttig M 2022 Classification of properties and their relation to chemical bonding: essential steps toward the inverse design of functional materials Sci. Adv.8 eade0828
[198] Park J K, Zhang Y, Xu B X and Kim S 2021 Pattern transfer of large-scale thin membranes with controllable self-delamination interface for integrated functional systems Nat. Commun.12 6882
[199] Wie D S, Zhang Y, Kim M K, Kim B, Park S, Kim Y J, Irazoqui P P, Zheng X L, Xu B X and Lee C H 2018 Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics Proc. Natl Acad. Sci. USA115 E7236–E7244
[200] Zhang Y, Liu Q C and Xu B X 2017 Liquid-assisted, etching-free, mechanical peeling of 2D materials Extreme Mech. Lett.16 33–40
[201] Zhang Y, Yin M T, Baek Y, Lee K, Zangari G, Cai L H and Xu B X 2020 Capillary transfer of soft films Proc. Natl Acad. Sci. USA117 5210–6
[202] Lee S M, Li W G, Dhar P, Malyk S, Wang Y, Lee W, Benderskii A and Yoon J 2015 High-performance flexible nanostructured silicon solar modules with plasmonically engineered upconversion medium Adv. Energy. Mater.5 1500761
[203] Iqra M, Anwar F, Jan R and Mohammad M A 2022 A flexible piezoresistive strain sensor based on laser scribed graphene oxide on polydimethylsiloxane Sci. Rep.12 4882
[204] Takamatsu S, Goto S, Yamamoto M, Yamashita T, Kobayashi T and Itoh T 2019 Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter Sci. Rep.9 1893
[205] Rimstidt J D and Barnes H L 1980 The kinetics of silica-water reactions Geochim. Cosmochim. Acta44 1683–99
[206] Morita M, Ohmi T, Hasegawa E, Kawakami M and Ohwada M 1990 Growth of native oxide on a silicon surface J. Appl. Phys.68 1272–81
[207] Hwang S W et al 2012 A physically transient form of silicon electronics Science337 1640–4
[208] Levine R D 2009 Molecular Reaction Dynamics (Cambridge University Press)
[209] Yu B J and Qian L M 2013 Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon Nanoscale Res. Lett.8 137
[210] ysko J M 2003 Anisotropic etching of the silicon crystal-surface free energy model Mater. Sci. Semicond. Process.6 235–41
[211] Seidel H, Csepregi L, Heuberger A and Baumgrtel H 1990 Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers J. Electrochem. Soc.137 3612–26
[212] Laermer F, Franssila S, Sainiemi L and Kolari K 2015 Deep reactive ion etching Handbook of Silicon Based MEMS Materials and Technologies 2nd edn, ed M Tilli, T Motooka, V M Airaksinen, S Franssila, M Paulasto-Krckel and V Lindroos (William Andrew Publishing) pp 444–69
[213] Yunkin V A, Fischer D and Voges E 1994 Highly anisotropic selective reactive ion etching of deep trenches in silicon Microelectron. Eng.23 373–6
[214] Knotter D M 2010 The chemistry of wet etching Handbook of Cleaning in Semiconductor Manufacturing: Fundamental and Applications ed K A Reinhardt and R F Reidy (Wiley) pp 95–141
[215] Tabata O, Asahi R, Funabashi H, Shimaoka K and Sugiyama S 1992 Anisotropic etching of silicon in TMAH solutions Sens. Actuators A 34 51–57
[216] Lin L J H and Chiou Y P 2012 Improving thin-film crystalline silicon solar cell efficiency with back surface field layer and blaze diffractive grating Sol. Energy86 1485–90
[217] Munzer K A, Holdermann K T, Schlosser R E and Sterk S 1999 Thin monocrystalline silicon solar cells IEEE Trans. Electron Devices46 2055–61
[218] Mularso K T 2018 Analysis of back surface field (BSF) performance in P-type and N-type monocrystalline silicon wafer E3S Web Conf.43 01006
[219] Li X L 2012 Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics Curr. Opin. Solid State Mater. Sci.16 71–81
[220] Kheyraddini Mousavi B, Behzadirad M, Silani Y, Karbasian F, Kheyraddini Mousavi A and Mohajerzadeh S 2019 Metal-assisted chemical etching of silicon and achieving pore sizes as small as 30 nm by altering gold thickness J. Vac. Sci. Technol. A 37 061402
[221] Song A, Yun S, Lokhande V and Ji T 2016 Rate controlled metal assisted chemical etching to fabricate vertical and uniform Si nanowires Proc. SPIE9759 165–9
[222] Garnett E C, Brongersma M L, Cui Y and McGehee M D 2011 Nanowire solar cells Annu. Rev. Mater. Res.41 269–95
[223] Bai F, Li M C, Song D D, Yu H, Jiang B and Li Y F 2012 One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature J. Solid State Chem.196 596–600
[224] Kim H, Jang H, Kim B, Kim M K, Wie D S, Lee H S, Kim D R and Lee C H 2018 Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules Sci. Adv.4 eaau6972
[225] Chiappini C, De Rosa E, Martinez J O, Liu X, Steele J, Stevens M M and Tasciotti E 2015 Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization Nat. Mater.14 532–9
[226] Chiappini C, Martinez J O, De Rosa E, Almeida C S, Tasciotti E and Stevens M M 2015 Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface ACS Nano9 5500–9
[227] Huang Z P, Geyer N, Werner P, De Boor J and Gsele U 2011 Metal-assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gsele Adv. Mater.23 285–308
[228] Fu Y N, Jin Z G, Liu G Q and Yin Y X 2009 Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method Synth. Met.159 1744–50
[229] Huo C L, Wang J, Fu H X, Li X L, Yang Y, Wang H, Mateen A, Farid G and Peng K Q 2020 Metal-assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application Adv. Funct. Mater.30 2005744
[230] Zhang J, Zhang Y N, Song T, Shen X L, Yu X G, Lee S T, Sun B Q and Jia B H 2017 High-performance ultrathin organic–inorganic hybrid silicon solar cells via solution-processed interface modification ACS Appl. Mater. Interfaces9 21723–9
[231] Kim H et al 2020 Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy ACS Nano14 7227–36
[232] Park S, Lee Y H, Wi J S and Oh J 2016 A semitransparent and flexible single crystal Si thin film: silicon on nothing (SON) revisited ACS Appl. Mater. Interfaces8 18962–8
[233] Leng X D, Wang C Y and Yuan Z S 2020 Progress in metal-assisted chemical etching of silicon nanostructures Proc. CIRP89 26–32
[234] Wang S, Weil B D, Li Y B, Wang K X, Garnett E, Fan S H and Cui Y 2013 Large-area free-standing ultrathin single-crystal silicon as processable materials Nano Lett.13 4393–8
[235] Pudasaini P R, Sharma M, Ruiz-Zepeda F and Ayon A A 2014 Efficiency improvement of a nanostructured polymer solar cell employing atomic layer deposited Al2O3 as a passivation layer Microelectron. Eng.119 6–10
[236] Jeong S, McGehee M D and Cui Y 2013 All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency Nat. Commun.4 2950
[237] Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A and Ayon A A 2013 High efficiency hybrid silicon nanopillar–polymer solar cells ACS Appl. Mater. Interfaces5 9620–7
[238] Oh J, Yuan H C and Branz H M 2012 An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures Nat. Nanotechnol.7 743–8
[239] Zhang F T, Liu D, Zhang Y F, Wei H X, Song T and Sun B Q 2013 Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell ACS Appl. Mater. Interfaces5 4678–84
[240] He J, Gao P Q, Ling Z H, Ding L, Yang Z H, Ye J C and Cui Y 2016 High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation ACS Nano10 11525–31
[241] Abbott J, Ye T Y, Ham D and Park H 2018 Optimizing nanoelectrode arrays for scalable intracellular electrophysiology Acc. Chem. Res.51 600–8
[242] Poortmans J and Arkhipov V 2006 Thin Film Solar Cells: Fabrication, Characterization and Applications (Wiley)
[243] Reuter M, Brendle W, Tobail O and Werner J H 2009 50 m thin solar cells with 17.0% efficiency Sol. Energy Mater. Sol. Cells93 704–6
[244] Depauw V, Richard O, Bender H, Gordon I, Beaucarne G, Poortmans J, Mertens R and Celis J P 2008 Study of pore reorganisation during annealing of macroporous silicon structures for solar cell application Thin Solid Films516 6934–8
[245] Depauw V, Gordon I, Beaucarne G, Poortmans J, Mertens R and Celis J P 2009 Innovative lift-off solar cell made of monocrystalline-silicon thin film by annealing of ordered macropores Phys. Status Solidi c 6 1750–3
[246] Sato T, Mitsutake K, Mizushima I and Tsunashima Y 2000 Micro-structure transformation of silicon: a newly developed transformation technology for patterning silicon surfaces using the surface migration of silicon atoms by hydrogen annealing Jpn. J. Appl. Phys.39 5033–8
[247] Lehmann V and Grning U 1997 The limits of macropore array fabrication Thin Solid Films297 13–17
[248] Chou S Y, Krauss P R and Renstrom P J 1996 Nanoimprint lithography J. Vac. Sci. Technol. B 14 4129–33
[249] Depauw V, Gordon I, Beaucarne G, Poortmans J, Mertens R and Celis J P 2009 Large-area monocrystalline silicon thin films by annealing of macroporous arrays: understanding and tackling defects in the material J. Appl. Phys.106 033516
[250] Hernndez D, Trifonov T, Garn M and Alcubilla R 2013 “Silicon millefeuille”: from a silicon wafer to multiple thin crystalline films in a single step Appl. Phys. Lett.102 172102
[251] Jang B, Kim K S, Kim J H, Choi H J, Park H S and Lee H J 2011 Rate-dependent adhesion between a spherical PDMS stamp and silicon substrate for a transfer-assembly process J. Adhes.87 744–54
[252] Grrn P, Sander M, Meyer J, Krger M, Becker E, Johannes H H, Kowalsky W and Riedl T 2006 Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes Adv. Mater.18 738–41
[253] Baca A J, Ahn J H, Sun Y G, Meitl M, Menard E, Kim H S, Choi W, Kim D H, Huang Y N and Rogers J 2008 Semiconductor wires and ribbons for high-performance flexible electronics Angew. Chem., Int. Ed.47 5524–42
[254] Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P D, Zhou C W, Marks T J and Janes D B 2007 Fabrication of fully transparent nanowire transistors for transparent and flexible electronics Nat. Nanotechnol.2 378–84
[255] Ellmer K 2012 Past achievements and future challenges in the development of optically transparent electrodes Nat. Photon.6 809–17
[256] Cheng C H, Lin Y H, Chang J H, Wu C I and Lin G R 2014 Semi-transparent Si-rich SixC1−x p–i–n photovoltaic solar cell grown by hydrogen-free PECVD RSC Adv.4 18397–405
[257] Lawn B 1993 Fracture of Brittle Solids 2nd edn (Cambridge University Press) p 194
[258] Hutchinson J W and Suo Z 1991 Mixed mode cracking in layered materials Adv. Appl. Mech.29 63–191
[259] Khayyat M M 2021 Crystalline silicon spalling as a direct application of temperature effect on semiconductors' indentation Crystals11 1020
[260] Lee Y H, Kim J and Oh J 2018 Wafer-scale ultrathin, single-crystal Si and GaAs photocathodes for photoelectrochemical hydrogen production ACS Appl. Mater. Interfaces10 33230–7
[261] Chen S L, Dong Y, Liu T L and Li J H 2022 Waterproof, flexible field-effect transistors with submicron monocrystalline Si nanomembrane derived encapsulation for continuous pH sensing Biosens. Bioelectron.195 113683
[262] Chiang C H et al 2020 Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates Sci. Transl. Med.12 eaay4682
[263] Thornton J A and Hoffman D W 1977 Internal stresses in titanium, nickel, molybdenum, and tantalum films deposited by cylindrical magnetron sputtering J. Vac. Sci. Technol.14 164–8
[264] Dennis J K and Such T E 1993 Nickel and Chromium Plating 3rd edn (Woodhead Publishing)
[265] Shahrjerdi D and Bedell S W 2013 Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic Nano Lett.13 315–20
[266] Suo Z G and Hutchinson J W 1989 Steady-state cracking in brittle substrates beneath adherent films Int. J. Solids Struct.25 1337–53
[267] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A and Lewis N S 2010 Solar water splitting cells Chem. Rev.110 6446–73
[268] Sharma S and Ghoshal S K 2015 Hydrogen the future transportation fuel: from production to applications Renew. Sustain. Energy Rev.43 1151–8
[269] Oh I, Kye J and Hwang S 2012 Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode Nano Lett.12 298–302
[270] Wang H P, Sun K, Noh S Y, Kargar A, Tsai M L, Huang M Y, Wang D L and He J H 2015 High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution Nano Lett.15 2817–24
[271] Jung J Y, Park M J, Li X P, Kim J H, Wehrspohn R B and Lee J H 2015 High performance H2 evolution realized in 20 m-thin silicon nanostructured photocathodes J. Mater. Chem. A 3 9456–60
[272] Hu S, Shaner M R, Beardslee J A, Lichterman M, Brunschwig B S and Lewis N S 2014 Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation Science344 1005–9
[273] Kang D, Young J L, Lim H, Klein W E, Chen H D, Xi Y Z, Gai B J, Deutsch T G and Yoon J 2017 Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting Nat. Energy2 17043
[274] Yu X G, Wang P, Li X Q and Yang D R 2012 Thin Czochralski silicon solar cells based on diamond wire sawing technology Sol. Energy Mater. Sol. Cells98 337–42
[275] Chen K X, Liu Y Y, Wang X S, Zhang L J and Su X D 2015 Novel texturing process for diamond-wire-sawn single-crystalline silicon solar cell Sol. Energy Mater. Sol. Cells133 148–55
[276] Lee Y H, Kim Y J, Han S M J, Song H E and Oh J 2016 Sub-5 m-thick spalled single crystal Si foils by decoupling crack initiation and propagation Appl. Phys. Lett.109 132101
[277] Cho M et al 2023 Ultra-thin thermally grown silicon dioxide nanomembrane for waterproof perovskite solar cells J. Power Sources563 232810
[278] Fang H et al 2017 Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology Nat. Biomed. Eng.1 0038
[279] Yuen S M, Ma C C M, Chiang C L, Lin Y Y and Teng C C 2007 Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite J. Polym. Sci. A 45 3349–58
[280] Zgheib E, Alhussein A, Slim M F, Khalil K and Franois M 2019 Multilayered models for determining the Young's modulus of thin films by means of impulse excitation technique Mech. Mater.137 103143
[281] Kim Y H, Chaug Y S, Chou N J and Kim J 1987 Adhesion of titanium thin film to oxide substrates J. Vac. Sci. Technol. A 5 2890–3
[282] Bhattacharya S, Datta A, Berg J M and Gangopadhyay S 2005 Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength J. Microelectromech. Syst.14 590–7
[283] Grandbois M, Beyer M, Rief M, Clausen-Schaumann H and Gaub H E 1999 How strong is a covalent bond? Science283 1727–30
[284] Zhou J W, Ellis A V and Voelcker N H 2010 Recent developments in PDMS surface modification for microfluidic devices Electrophoresis31 2–16
[285] Berdichevsky Y, Khandurina J, Guttman A and Lo Y H 2004 UV/ozone modification of poly(dimethylsiloxane) microfluidic channels Sens. Actuators B 97 402–8
[286] Knizikeviius R and Kopustinskas V 2004 Anisotropic etching of silicon in SF6 plasma Vacuum77 1–4
[287] Alessandri A, D'Ercoli F, Petruzza P and Sciutti A 2022 Deep silicon etch Silicon Sensors and Actuators: The Feynman Roadmap ed B Vigna, P Ferrari, F F Villa, E Lasalandra and S Zerbini (Springer) pp 133–67
[288] Van Toan N, Kubota T, Sekhar H, Samukawa S and Ono T 2014 Mechanical quality factor enhancement in a silicon micromechanical resonator by low-damage process using neutral beam etching technology J. Micromech. Microeng.24 085005
[289] Levey A S and Coresh J 2012 Chronic kidney disease Lancet379 165–80
[290] Chang E F 2015 Towards large-scale, human-based, mesoscopic neurotechnologies Neuron86 68–78
[291] Hermes D, Miller K J, Noordmans H J, Vansteensel M J and Ramsey N F 2010 Automated electrocorticographic electrode localization on individually rendered brain surfaces J. Neurosci. Methods185 293–8
[292] Song E M, Li J H, Won S M, Bai W B and Rogers J A 2020 Materials for flexible bioelectronic systems as chronic neural interfaces Nat. Mater.19 590–603
[293] Fengel C V, Yu S Y, Kim J, Johnston M L and Minot E D 2023 Multiplexed detection of spike patterns using active graphene neurosensors 2023 IEEE Int. Symp. on Circuits and Systems (ISCAS) (IEEE) pp 1–5
[294] Bork A, Laboda K and Bonyr A 2021 PDMS bonding technologies for microfluidic applications: a review Biosensors11 292
[295] Teixeira V, Carneiro J, Carvalho P, Silva E, Azevedo S and Batista C 2011 High barrier plastics using nanoscale inorganic films Multifunctional and Nanoreinforced Polymers for Food Packaging ed J M Lagarn (Woodhead Publishing) pp 285–315
[296] Tsai C C, Anderson G B and Thompson R 1991 Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma J. Non-Cryst. Solids137–8 673–6
[297] Dahmen K H 2003 Chemical Vapor Deposition. In Encyclopedia of Physical Science and Technology 3rd edn, ed R A Meyers (Academic) pp 787–808
[298] Matsumura H, Umemoto H and Masuda A 2004 Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon J. Non-Cryst. Solids338–40 19–26
[299] Yamazaki S, Wada K and Taniguchi I 1970 Silicon nitride prepared by the SiH4-NH3 reaction with catalysts Jpn. J. Appl. Phys.9 1467–77
[300] Hsiao W C, Liu C P and Wang Y L 2008 Thermal properties of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor deposition J. Phys. Chem. Sol.69 648–52
[301] Yang R F, Lee C H, Cui B and Sazonov A 2018 Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting applications Mater. Sci. Eng.229 1–5
[302] Cariou R et al 2016 Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process Prog. Photovolt., Res. Appl.24 1075–84
[303] Hong J E, Lee Y, Mo S I, Jeong H S, An J H, Song H E, Oh J, Bang J, Oh J H and Kim K H 2021 Fully bottom-up waste-free growth of ultrathin silicon wafer via self-releasing seed layer Adv. Mater.33 2103708
[304] Jo H, Yang J H, Lee J H, Lim J W, Lee J, Shin M, Ahn J H and Kwon J D 2018 Transparent bifacial a-Si:H solar cells employing silver oxide embedded transparent rear electrodes for improved transparency Sol. Energy170 940–6
[305] Chang S and Sivoththaman S 2006 Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer J. Micromech. Microeng.16 1307–13
[306] Kim Y, Massoud H Z and Fair R B 1989 The effect of ion-implantation damage on dopant diffusion in silicon during shallow-junction formation J. Electron. Mater.18 143–50
[307] Demchenko I N et al 2020 Effect of rapid thermal annealing on damage of silicon matrix implanted by low-energy rhenium ions J. Alloys Compd.846 156433
[308] Liu X, Pohl R O, Asher S and Crandall R S 1998 Contamination of silicon during ion-implantation and annealing J. Non-Cryst. Solids227–30 407–10
[309] Alpuim P, Chu V and Conde J P 2003 Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition J. Vac. Sci. Technol. A 21 1048–54
[310] Pang C L, Cui H, Yang G W and Wang C X 2013 Flexible transparent and free-standing silicon nanowires paper Nano Lett.13 4708–14
[311] Cui H, Li S Y, Deng S Z, Chen H J and Wang C X 2017 Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection ACS Sens.2 386–93
[312] Park S, Lee J and Ko H 2017 Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film ACS Appl. Mater. Interfaces9 44088–95
[313] Ablekim T et al 2020 Thin-film solar cells with 19% efficiency by thermal evaporation of CdSe and CdTe ACS Energy Lett.5 892–6
[314] Wang Z P and Zhang Z M 2016 Electron beam evaporation deposition Advanced Nano Deposition Methods ed Y Lin and X Chen (Wiley) pp 33–58
[315] Depla D, Mahieu S and Greene J E 2010 Sputter deposition processes Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology 3rd edn, ed P M Martin (William Andrew) pp 253–96
[316] Jiao X Q, Zhang R, Yang J, Zhong H, Shi Y, Chen X Y and Shi J 2014 Characterizations of evaporated -Si thin films for MEMS application Appl. Phys. A 116 621–7
[317] Joseph J, Singh S G and Vanjari S R K 2017 Ultra-smooth e-beam evaporated amorphous silicon thin films–a viable alternative for PECVD amorphous silicon thin films for MEMS applications Mater. Lett.197 52–55
[318] Zhang X H, Wang D H, Qiu X Y, Ma Y J, Kong D B, Mllen K, Li X L and Zhi L J 2020 Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation Nat. Commun.11 3826
[319] Lee J, Oh G, Jung H Y and Hwang J Y 2023 Silicon anode: a perspective on fast charging lithium-ion battery Inorganics11 182
[320] Deng J W, Ji H X, Yan C L, Zhang J X, Si W P, Baunack S, Oswald S, Mei Y F and Schmidt O G 2013 Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance Angew. Chem.125 2382–6
[321] van der Wilt P C, van Dijk B D, Bertens G J, Ishihara R and Beenakker C I M 2001 Formation of location-controlled crystalline islands using substrate-embedded seeds in excimer-laser crystallization of silicon films Appl. Phys. Lett.79 1819–21
[322] Pereira L, guas H, Martins R M S, Vilarinho P, Fortunato E and Martins R 2004 Polycrystalline silicon obtained by metal induced crystallization using different metals Thin Solid Films451–2 334–9
[323] Nguyen T N, Nguyen V D, Jung S and Yi J 2010 The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on a glass substrate Microelectron. Eng.87 2163–7
[324] zmen T, Karaman M and Turan R 2014 Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique Thin Solid Films551 181–7
[325] Bo X Z, Yao N, Shieh S R, Duffy T S and Sturm J C 2002 Large-grain polycrystalline silicon films with low intragranular defect density by low-temperature solid-phase crystallization without underlying oxide J. Appl. Phys.91 2910–5
[326] Bidin N and Ab Razak S N 2012 ArF excimer laser annealing of polycrystalline silicon thin film Crystallization Science and Technology ed M Andreeta (IntechOpen) p 481
[327] Pyo J, Lee B and Ryu H Y 2021 Evaluation of crystalline volume fraction of laser-annealed polysilicon thin films using Raman spectroscopy and spectroscopic ellipsometry Micromachines12 999
[328] Chowdhury S, Park J, Kim J, Kim S, Kim Y, Cho E C, Cho Y and Yi J 2020 Crystallization of amorphous silicon via excimer laser annealing and evaluation of its passivation properties Energies13 3335
[329] Fortunato G, Pecora A, Maiolo L, Cuscuna M, Simeone D, Minotti A and Mariucci L 2007 Excimer laser annealing for low-temperature polysilicon thin film transistor fabrication on plastic substrates 2007 15th Int. Conf. on Advanced Thermal Processing of Semiconductors (IEEE) pp 301–5
[330] Kang M K, Kim S J and Kim H J 2014 Fabrication of high performance thin-film transistors via pressure-induced nucleation Sci. Rep.4 6858
[331] Lee S, Cho Y J, Han B, Lee J, Choi S, Kang T, Chu H Y, Kwag J, Kim S C and Jang J 2022 Poly-Si thin-film transistors on polyimide substrate for 1 mm diameter rollable active-matrix organic light-emitting diode display Adv. Eng. Mater.24 2100910
[332] Maita F, Maiolo L, Minotti A, Pecora A, Ricci D, Metta G, Scandurra G, Giusi G, Ciofi C and Fortunato G 2015 Ultraflexible tactile piezoelectric sensor based on low-temperature polycrystalline silicon thin-film transistor technology IEEE Sens. J.15 3819–26
[333] Wang Z M, Wang J Y, Jeurgens L P H and Mittemeijer E J 2008 Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: experiments and calculations on Al/a-Ge and Al/a-Si bilayers Phys. Rev. B 77 045424
[334] Karnaushenko D et al 2015 Light weight and flexible high-performance diagnostic platform Adv. Healthcare Mater.4 1517–25
[335] Zhang S B, Zhang T, Liu Z G, Wang J Z, Yu L W, Xu J, Chen K J and Cabarrocas P R I 2021 Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio Nano Energy86 106121
[336] Wacaser B A, Dick K A, Johansson J, Borgstrm M T, Deppert K and Samuelson L 2009 Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires Adv. Mater.21 153–65
[337] Mohammad S N 2008 Analysis of the vapor–liquid–solid mechanism for nanowire growth and a model for this mechanism Nano Lett.8 1532–8
[338] Noor M O and Krull U J 2014 Silicon nanowires as field-effect transducers for biosensor development: a review Anal. Chim. Acta825 1–25
[339] Madkour L H 2019 Synthesis methods for 2D nanostructured materials, nanoparticles (NPs), nanotubes (NTs) and nanowires (NWs) Nanoelectronic Materials: Fundamentals and Applications ed L H Madkour (Springer) pp 393–456
[340] Hannon J B, Kodambaka S, Ross F M and Tromp R M 2006 The influence of the surface migration of gold on the growth of silicon nanowires Nature440 69–71
[341] Kurtuldu G and Krogh F 2021 Insight into crystallization paths in Au–Si eutectic alloy through the energy-temperature diagram Materialia16 101093
[342] Przyborowski M, Hibiya T, Eguchi M and Egry I 1995 Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation J. Cryst. Growth151 60–65
[343] Pinion C W, Nenon D P, Christesen J D and Cahoon J F 2014 Identifying crystallization- and incorporation-limited regimes during vapor–liquid–solid growth of Si nanowires ACS Nano8 6081–8
[344] Westwater J, Gosain D P and Usui S 1997 Control of the size and position of silicon nanowires grown via the vapor-liquid-solid technique Jpn. J. Appl. Phys.36 6204–9
[345] Wang Y W, Schmidt V, Senz S and Gsele U 2006 Epitaxial growth of silicon nanowires using an aluminium catalyst Nat. Nanotechnol.1 186–9
[346] Chin C D, Chin S Y, Laksanasopin T and Sia S K 2013 Low-cost microdevices for point-of-care testing Point-of-Care Diagnostics on a Chip ed D Issadore and R M Westervelt (Springer) pp 3–21
[347] Kaltenbrunner M et al 2013 An ultra-lightweight design for imperceptible plastic electronics Nature499 458–63
[348] Kaltenbrunner M, White M S, Gowacki E D, Sekitani T, Someya T, Sariciftci N S and Bauer S 2012 Ultrathin and lightweight organic solar cells with high flexibility Nat. Commun.3 770
[349] Chen K I, Li B R and Chen Y T 2011 Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation Nano Today6 131–54
[350] Heinzig A, Slesazeck S, Kreupl F, Mikolajick T and Weber W M 2012 Reconfigurable silicon nanowire transistors Nano Lett.12 119–24
[351] Weber W M et al 2006 Silicon-nanowire transistors with intruded nickel-silicide contacts Nano Lett.6 2660–6
[352] Weber W M, Duesberg G S, Graham A P, Liebau M, Unger E, Cheze C, Geelhaar L, Lugli P, Riechert H and Kreupl F 2006 Silicon nanowires: catalytic growth and electrical characterization Phys. Status Solidi b 243 3340–5
[353] Fahem Z, Csaba G, Erlen C M, Lugli P, Weber W M, Geelhaar L and Riechert H 2008 Analysis of the hysteretic behavior of silicon nanowire transistors Phys. Status Solidi c 5 27–30
[354] Weber W M, Geelhaar L, Unger E, Chze C, Kreupl F, Riechert H and Lugli P 2007 Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics Phys. Status Solidi b 244 4170–5
[355] Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y and Ko H 2019 Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance J. Mater. Chem. A 7 1107–14
[356] Keppner H, Meier J, Torres P, Fischer D and Shah A 1999 Microcrystalline silicon and micromorph tandem solar cells Appl. Phys. A 69 169–77
[357] Sderstrm T, Haug F J, Niquille X, Terrazzoni V and Ballif C 2009 Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells Appl. Phys. Lett.94 063501
[358] Terakawa A 2013 Review of thin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo Sol. Energy Mater. Sol. Cells119 204–8