• Photonics Research
  • Vol. 8, Issue 9, B8 (2020)
Luqi Yuan1、*, Avik Dutt2, Mingpu Qin3, Shanhui Fan2、5, and Xianfeng Chen1、4、6
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Department of Electrical Engineering, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
  • 3School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 5e-mail: shanhui@stanford.edu
  • 6e-mail: xfchen@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.396731 Cite this Article Set citation alerts
    Luqi Yuan, Avik Dutt, Mingpu Qin, Shanhui Fan, Xianfeng Chen. Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons[J]. Photonics Research, 2020, 8(9): B8 Copy Citation Text show less
    References

    [1] O. Boada, A. Celi, J. I. Latorre, M. Lewenstein. Quantum simulation of an extra dimension. Phys. Rev. Lett., 108, 133001(2012).

    [2] D. Jukić, H. Buljan. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A, 87, 013814(2013).

    [3] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, M. Lewenstein. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett., 112, 043001(2014).

    [4] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, L. Fallani. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science, 349, 1510-1513(2015).

    [5] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, I. B. Spielman. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science, 349, 1514-1518(2015).

    [6] B. Gadway. Atom-optics approach to studying transport phenomena. Phys. Rev. A, 92, 043606(2015).

    [7] D.-W. Wang, R.-B. Liu, S.-Y. Zhu, M. O. Scully. Superradiance lattice. Phys. Rev. Lett., 114, 043602(2015).

    [8] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, L. Fallani. Synthetic dimensions and spin-orbit coupling with an optical clock transition. Phys. Rev. Lett., 117, 220401(2016).

    [9] S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey, J. Ye. Spin-Corbit-coupled fermions in an optical lattice clock. Nature, 542, 66-70(2017).

    [10] H. M. Price, T. Ozawa, N. Goldman. Synthetic dimensions for cold atoms from shaking a harmonic trap. Phys. Rev. A, 95, 023607(2017).

    [11] I. Martin, G. Refael, B. Halperin. Topological frequency conversion in strongly driven quantum systems. Phys. Rev. X, 7, 041008(2017).

    [12] Y. Baum, G. Refael. Setting boundaries with memory: generation of topological boundary states in Floquet-induced synthetic crystals. Phys. Rev. Lett., 120, 106402(2018).

    [13] H. Cai, J. Liu, J. Wu, Y. He, S.-Y. Zhu, J.-X. Zhang, D.-W. Wang. Experimental observation of momentum-space chiral edge currents in room-temperature atoms. Phys. Rev. Lett., 122, 023601(2019).

    [14] K. Tschernig, R. J. de León-Montiel, A. Pérez-Leija, K. Busch. Multiphoton synthetic lattices in multiport waveguide arrays: synthetic atoms and Fock graphs. Photon. Res., 8, 1161-1170(2020).

    [15] L. Yuan, Q. Lin, M. Xiao, S. Fan. Synthetic dimension in photonics. Optica, 5, 1396-1405(2018).

    [16] T. Ozawa, H. M. Price. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys., 1, 349-357(2019).

    [17] L. Yuan, Y. Shi, S. Fan. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett., 41, 741-744(2016).

    [18] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, I. Carusotto. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A, 93, 043827(2016).

    [19] E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, M. Segev. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [20] X.-W. Luo, X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, Z.-W. Zhou. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun., 6, 7704(2015).

    [21] A. Schwartz, B. Fischer. Laser mode hyper-combs. Opt. Express, 21, 6196-6204(2013).

    [22] L. Yuan, M. Xiao, Q. Lin, S. Fan. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B, 97, 104105(2018).

    [23] E. Lustig, Y. Plotnik, Z. Yang, M. Segev. 3D parity time symmetry in 2D photonic lattices utilizing artificial gauge fields in synthetic dimensions. Conference on Lasers and Electro-Optics, FTu4B.1(2019).

    [24] L. Yuan, S. Fan. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. Optica, 3, 1014-1018(2016).

    [25] Q. Lin, M. Xiao, L. Yuan, S. Fan. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun., 7, 13731(2016).

    [26] Y. Zhang, Y. Zhu. Generation of Weyl points in coupled optical microdisk-resonator arrays via external modulation. Phys. Rev. A, 96, 013811(2017).

    [27] X.-W. Luo, X. Zhou, J.-S. Xu, C.-F. Li, G.-C. Guo, C. Zhang, Z.-W. Zhou. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun., 8, 16097(2017).

    [28] X.-F. Zhou, X.-W. Luo, S. Wang, G.-C. Guo, X. Zhou, H. Pu, Z.-W. Zhou. Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity. Phys. Rev. Lett., 118, 083603(2017).

    [29] X.-W. Luo, C. Zhang, G.-C. Guo, Z.-W. Zhou. Topological photonic orbital-angular-momentum switch. Phys. Rev. A, 97, 043841(2018).

    [30] L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, S. Fan. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions. Phys. Rev. Lett., 122, 083903(2019).

    [31] A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, S. Fan. A single photonic cavity with two independent physical synthetic dimensions. Science, 367, 59-64(2020).

    [32] A. Dutt, M. Monkov, Q. Lin, L. Yuan, D. A. B. Miller, S. Fan. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun., 10, 3122(2019).

    [33] B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, B. J. Eggleton. Spectral photonic lattices with complex long-range coupling. Optica, 4, 1433-1436(2017).

    [34] C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, P. Lu. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett., 120, 133901(2018).

    [35] I. Bloch, J. Dalibard, W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885-964(2008).

    [36] D. E. Chang, V. Vuletić, M. D. Lukin. Quantum nonlinear optics–photon by photon. Nat. Photonics, 8, 685-694(2014).

    [37] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, M. Greiner. Microscopy of the interacting Harper-CHofstadter model in the two-body limit. Nature, 546, 519-523(2017).

    [38] D. Roy, C. M. Wilson, O. Firstenberg. Colloquium: strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys., 89, 021001(2017).

    [39] D. A. Abanin, E. Altman, I. Bloch, M. Serbyn. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91, 021001(2019).

    [40] T. Ozawa, I. Carusotto. Synthetic dimensions with magnetic fields and local interactions in photonic lattices. Phys. Rev. Lett., 118, 013601(2017).

    [41] L. Barbiero, L. Chomaz, S. Nascimbene, N. Goldman. Bose-Hubbard physics in synthetic dimensions from interaction trotterization(2019).

    [42] R. W. Boyd. Nonlinear Optics(2008).

    [43] D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, G. Leuchs. Nonlinear and quantum optics with whispering gallery resonators. J. Opt., 18, 123002(2016).

    [44] H. Sambe. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A, 7, 2203-2213(1973).

    [45] A. Yariv, P. Yeh. Photonics: Optical Electronics in Modern Communications(2007).

    [46] H. A. Haus. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron., 6, 1173-1185(2000).

    [47] H. A. Haus. Waves and Fields in Optoelectronics(1984).

    [48] A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, L. Maleki. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A, 71, 033804(2005).

    [49] Y. K. Chembo, D. V. Strekalov, N. Yu. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett., 104, 103902(2010).

    [50] M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, M. D. Lukin. Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide. Phys. Rev. A, 85, 013822(2012).

    [51] A. Biella, L. Mazza, I. Carusotto, D. Rossini, R. Fazio. Photon transport in a dissipative chain of nonlinear cavities. Phys. Rev. A, 91, 053815(2015).

    [52] K. G. L. Pedersen, M. Pletyukhov. Few-photon scattering on Bose-Hubbard lattices. Phys. Rev. A, 96, 023815(2017).

    [53] C. W. Gardiner, M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31, 3761-3774(1985).

    [54] S. Fan, Ş. E. Kocabaş, J.-T. Shen. Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A, 82, 063821(2010).

    [55] L. Yuan, M. Xiao, S. Xu, S. Fan. Creating anyons from photons using a nonlinear resonator lattice subject to dynamic modulation. Phys. Rev. A, 96, 043864(2017).

    [56] M. O. Scully, M. S. Zubairy. Quantum Optics(1997).

    [57] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87-90(2005).

    [58] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, M. D. Lukin. Photon-photon interactions via Rydberg blockade. Phys. Rev. Lett., 107, 133602(2011).

    [59] B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 7, 630-641(2019).

    [60] V. Venkataraman, K. Saha, A. L. Gaeta. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics, 7, 138-141(2013).

    [61] M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, G. Rempe. Three-photon correlations in a strongly driven atom-cavity system. Phys. Rev. Lett., 107, 023601(2011).

    [62] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu. Ultrafast all-optical switching by single photons. Nat. Photonics, 6, 605-609(2012).

    [63] C. Junge, D. O’shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 110, 213604(2013).

    [64] S. Kato, T. Aoki. Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett., 115, 093603(2015).

    [65] M. Radulaski, J. L. Zhang, Y.-K. Tzeng, K. G. Lagoudakis, H. Ishiwata, C. Dory, K. A. Fischer, Y. A. Kelaita, S. Sun, P. C. Maurer, K. Alassaad, G. Ferro, Z.-X. Shen, N. A. Melosh, S. Chu, J. Vučković. Nanodiamond integration with photonic devices. Laser Photon. Rev., 13, 1800316(2019).

    [66] C. K. Ha, K. S. Lee, D. Kwon, M. S. Kang. Widely tunable ultra-narrow-linewidth dissipative soliton generation at the telecom band. Photon. Res., 8, 1100-1109(2020).

    [67] W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, H. Schmidt. Atomic spectroscopy on a chip. Nat. Photonics, 1, 331-335(2007).

    [68] R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, R. Löw. Atomic vapor spectroscopy in integrated photonic structures. Appl. Phys. Lett., 107, 041101(2015).

    [69] L. Stern, B. Desiatov, N. Mazurski, U. Levy. Strong coupling and high-contrast all-optical modulation in atomic cladding waveguides. Nat. Commun., 8, 14461(2017).

    [70] Y. Zhu, J. A. Greenberg, N. A. Husein, D. J. Gauthier. Giant all-optical tunable group velocity dispersion in an optical fiber. Opt. Express, 22, 14382-14391(2014).

    [71] M. B. Mia, N. Jaidye, S. Kim. Extremely high dispersions in heterogeneously coupled waveguides. Opt. Express, 27, 10426-10437(2019).

    [72] N. R. A. Lee, M. Pechal, E. Alex Wollack, P. Arrangoiz-Arriola, Z. Wang, A. H. Safavi-Naeini. Electric fields for light: propagation of microwave photons along a synthetic dimension(2019).

    [73] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafei, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    CLP Journals

    [1] Andrea Alù, Laura Pilozzi, Haitan Xu, Jingyun Fan. Topological photonics and beyond: introduction[J]. Photonics Research, 2021, 9(1): TPB1

    Luqi Yuan, Avik Dutt, Mingpu Qin, Shanhui Fan, Xianfeng Chen. Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons[J]. Photonics Research, 2020, 8(9): B8
    Download Citation