• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 11, 3768 (2022)
JIANG Xiaoqi1、2、*, SUN Yan1, WANG Yafei1, WANG Xin1, CHEN Shubin1, HU Lili1, SHI Yanchun3, and GUO Aimin3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    JIANG Xiaoqi, SUN Yan, WANG Yafei, WANG Xin, CHEN Shubin, HU Lili, SHI Yanchun, GUO Aimin. Effect of Nb2O5 on Spectral Properties of Nd3+ Doped Germanate Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3768 Copy Citation Text show less
    References

    [1] KANG T, KIM K, KIM S, et al. Underwater laser communication with sloped pulse modulation in turbid water[J]. International Journal of Distributed Sensor Networks, 2019, 15(3): 1550147719837872.

    [2] KAUSHAL H, KADDOUM G. Underwater optical wireless communication[J]. IEEE Access, 2017, 4(2): 15181547.

    [3] HAASE M A, QIU J, DEPUYDT J M, et al. Bluegreen laser diodes[J]. Applied Physics Letters, 1991, 59(11): 12721274.

    [4] L Y F, SUN G C, FU X H, et al. Diodepumped Nd∶YVO4/BiBO blue laser at 440 nm[J]. Laser Physics Letters, 2010, 7(7): 495497.

    [5] ZHOU K, IKEDA M, LIU J P, et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes[J]. Applied Physics Letters, 2014, 105(17): 173510.

    [6] LV Z G, YANG Z, LI Q L, et al. Photonic crystal rodbased highperformance ultrafast fiber laser system[J]. High Power Laser Science and Engineering, 2020, 8(4): 8894.

    [7] LIM K J, SEAH S K W, YE J Y, et al. High absorption largemode area stepindex fiber for tandempumped highbrightness highpower lasers[J]. Photonics Research, 2020, 8(10): 15991604.

    [8] WANG Y F, LI X Y, WU J M, et al. Threelevel allfiber laser at 915 nm based on polarizationmaintaining Nd3+doped silica fiber[J]. Chinese Optics Letters, 2020, 18(1): 011401.

    [9] BROWN D C, Highpeakpower Nd: glass laser systems[M] Springer, 2013.

    [10] DUGUAY M, HANSEN J, SHAPIRO S. Study of the Nd: glass laser radiation[J]. IEEE Journal of Quantum Electronics, 1970, 6(11): 725743.

    [11] LOMHEIM T S, DESHAZER L G. New procedure of determining neodymium fluorescence branching ratios as applied to 25 crystal and glass hosts[J]. Optics Communications, 1978, 24(1): 8994.

    [12] JIANG X Q, SUN Y, WANG X, et al. Spectroscopic properties and Stark splitting of Nd3+ ions in different host glasses to obtain pure blue laser[J]. Journal of Luminescence, 2022, 249: 119005.

    [13] SUN Y, WANG X, LIAO M S, et al. Compositional dependence of Stark splitting and spectroscopic properties in Yb3+doped lead silicate glasses[J]. Journal of NonCrystalline Solids, 2020, 532: 119890.

    [14] HAYDEN J S, HAYDEN Y T, CAMPBELL J H. Effect of composition on the thermal, mechanical, and optical properties of phosphate laser glasses[C]//Proc SPIE 1277, HighPower Solid State Lasers and Applications, 1990, 1277: 121139.

    [15] MASUNO A, INOUE H. High refractive index of 0.30La2O30.70Nb2O5 glass prepared by containerless processing[J]. Applied Physics Express, 2010, 3(10): 102601.

    [16] DENRY I L, HOLLOWAY J A, NAKKULA R J, et al. Effect of niobium content on the microstructure and thermal properties of fluorapatite glassceramics[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2005, 75(1): 1824.

    [17] HAYAKAWA T, HAYAKAWA M, NOGAMI M. Estimation of the fs laser spot temperature inside TeO2ZnONb2O5 glass by using upconversion green fluorescence of Er3+ ions[J]. Journal of Alloys and Compounds, 2008, 451(1/2): 7780.

    [18] PRAKASH G V, RAO D N, BHATNAGAR A K. Linear optical properties of niobiumbased tellurite glasses[J]. Solid State Communications, 2001, 119(1): 3944.

    [19] WANG Y L, DAI S X, CHEN F F, et al. Physical properties and optical band gap of new tellurite glasses within the TeO2Nb2O5Bi2O3 system[J]. Materials Chemistry and Physics, 2009, 113(1): 407411.

    [20] SAUDI H A, GOMAA H M. The effect of Nb2O5 on fast neutron removal cross section, optical, and structural properties of some calcium borate oxide glasses containing Bi3+ ions[J]. Radiation Detection Technology and Methods, 2018, 3(1): 16.

    [21] DAVIS E A, MOTT N F. Conduction in noncrystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors[J]. Philosophical Magazine, 1970, 22(179): 903922.

    [22] JUDD B. Optical absorption intensities of rareearth ions[J]. Physical Review, 1962, 127: 750761.

    [23] WANG Y F, CHEN W W, CAO J K, et al. Boosting the branching ratio at 900 nm in Nd3+ doped germanophosphate glasses by crystal field strength and structural engineering for efficient blue fiber lasers[J]. Journal of Materials Chemistry C, 2019, 7(38): 1182411833.

    [24] BINNEMANS K, DEUN R V, GRLLERWALRAND C, et al. Optical properties of Nd3+doped fluorophosphate glasses[J]. Journal of Alloys and Compounds, 1998, 275/276/277: 455460.

    [25] KRUPKE W. Inducedemission cross sections in neodymium laser glasses[J]. IEEE Journal of Quantum Electronics, 1974, 10(4): 450457.

    [26] REDDY C M, VIJAYA N, RAJU B D P. NIR fluorescence studies of neodymium ions doped sodium fluoroborate glasses for 1.06 μm laser applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 115: 297304.

    [27] WEI T, TIAN Y, TIAN C, et al. Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and nearinfrared applications of the neodymium doped germanate glass[J]. Journal of Alloys and Compounds, 2015, 618: 95101.

    [28] RAJU C N, REDDY C A, SAILAJA S, et al. JuddOfelt theory: optical absorption and NIR emission spectral studies of Nd3+∶CdOBi2O3B2O3 glasses for laser applications[J]. Journal of Materials Science, 2012, 47(2): 772778.

    [29] TIAN Y, ZHANG J J, JING X F, et al. Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 98: 355358.

    [30] YANG J, DALFSEN K, WRHOFF K, et al. Highgain Al2O3∶Nd3+ channel waveguide amplifiers at 880 nm, 1 060 nm, and 1 330 nm[J]. Applied Physics B, 2010, 101(1/2): 119127.

    [31] BABU S S, RAJESWARI R, JANG K, et al. Spectroscopic investigations of 1.06 μm emission in Nd3+doped alkali niobium zinc tellurite glasses[J]. Journal of Luminescence, 2010, 130(6): 10211025.

    [32] EBENDORFFHEIDEPRIEM H, SEEBER W, EHRT D. Spectroscopic properties of Nd3+ ions in phoshate glasses[J]. Journal of NonCrystalline Solids, 1995, 183(1/2): 191200.

    [33] KRUPKE W. Radiative transition probabilities within the 4f3 ground configuration of Nd∶YAG[J]. IEEE Journal of Quantum Electronics, 1971, 7(4): 153159.

    [34] JAMALAIAH B C, SUHASINI T, MOORTHY L R, et al. Structural and luminescence properties of Nd3+doped PbOB2O3TiO2AlF3 glass for 1.07 μm laser applications[J]. Journal of Luminescence, 2012, 132(5): 11441149.

    JIANG Xiaoqi, SUN Yan, WANG Yafei, WANG Xin, CHEN Shubin, HU Lili, SHI Yanchun, GUO Aimin. Effect of Nb2O5 on Spectral Properties of Nd3+ Doped Germanate Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3768
    Download Citation