• Acta Physica Sinica
  • Vol. 69, Issue 11, 114201-1 (2020)
Lei Pan1、2, Bao-An Song1、2、*, Chuan-Fu Xiao1、2, Pei-Qing Zhang2、3, Chang-Gui Lin2、3, and Shi-Xun Dai2、3
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • 2Zhejiang Key Laboratory of Photoelectric Detection Materials and Devices, Ningbo University, Ningbo 315211, China
  • 3Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China
  • show less
    DOI: 10.7498/aps.69.20200145 Cite this Article
    Lei Pan, Bao-An Song, Chuan-Fu Xiao, Pei-Qing Zhang, Chang-Gui Lin, Shi-Xun Dai. Optical properties and microstructure of two Ge-Sb-Se thin films[J]. Acta Physica Sinica, 2020, 69(11): 114201-1 Copy Citation Text show less
    Schematic of the structure of a thin film coated on a transparent silica glass substrate.
    Fig. 1. Schematic of the structure of a thin film coated on a transparent silica glass substrate.
    Transmittance curve of Si-H thin film on finite glass substrate.
    Fig. 2. Transmittance curve of Si-H thin film on finite glass substrate.
    Comparison of refractive index and dispersion of thin film obtained by six different models.
    Fig. 3. Comparison of refractive index and dispersion of thin film obtained by six different models.
    Relation between the refractive index and the dispersion obtained by six dispersion models (include MCM) and the true value as a function of wavelength: (a) Δnvs. wavelength; (b) ΔDvs. wavelength.
    Fig. 4. Relation between the refractive index and the dispersion obtained by six dispersion models (include MCM) and the true value as a function of wavelength: (a) Δnvs. wavelength; (b) ΔDvs. wavelength.
    Comparison of five filtering methods to reduce noise: (a) Adjacent averaging method; (b) Savitaky-Golay method; (c) percentile filter method; (d) FFT filter method; (e) piecewise fitting method.
    Fig. 5. Comparison of five filtering methods to reduce noise: (a) Adjacent averaging method; (b) Savitaky-Golay method; (c) percentile filter method; (d) FFT filter method; (e) piecewise fitting method.
    Transmission curve with upper and lower tangent envelopes obtained by using the improved Swanepoel method: (a) Ge20Sb15Se65 film; (b) Ge28Sb12Se60 film.
    Fig. 6. Transmission curve with upper and lower tangent envelopes obtained by using the improved Swanepoel method: (a) Ge20Sb15Se65 film; (b) Ge28Sb12Se60 film.
    Refractive index and dispersion of Ge-Sb-Se films: (a) Refractive index vs. wavelength; (b) dispersion vs. wavelength.
    Fig. 7. Refractive index and dispersion of Ge-Sb-Se films: (a) Refractive index vs. wavelength; (b) dispersion vs. wavelength.
    Absorption characteristics of Ge-Sb-Se films: (a) Absorption coefficient vs. wavelength; (b) square root of the product of the absorption coefficient and photon energy vs. the photon energy in the strong absorption region.
    Fig. 8. Absorption characteristics of Ge-Sb-Se films: (a) Absorption coefficient vs. wavelength; (b) square root of the product of the absorption coefficient and photon energy vs. the photon energy in the strong absorption region.
    Raman spectrum of Ge-Sb-Se film.
    Fig. 9. Raman spectrum of Ge-Sb-Se film.
    名称模型
    Cauchy$n = A + \dfrac{B}{{{\lambda ^2}}} + \dfrac{C}{{{\lambda ^4}}}$
    二阶归一化标准Sellmeier$n = \sqrt {1 + \dfrac{{A \cdot {\lambda ^2}}}{{{\lambda ^2} - B}} + \dfrac{{C \cdot {\lambda ^2}}}{{{\lambda ^2} - D}}} $
    三阶归一化标准Sellmeier$n = \sqrt {1 + \dfrac{{A \cdot {\lambda ^2}}}{{{\lambda ^2} - B}} + \dfrac{{C \cdot {\lambda ^2}}}{{{\lambda ^2} - D}} + \dfrac{{E \cdot {\lambda ^2}}}{{{\lambda ^2} - F}}} $
    二阶非标准形式的Sellmeier$n = \sqrt {A + \dfrac{{B \cdot {\lambda ^2}}}{{{\lambda ^2} - C}} + D \cdot {\lambda ^2}} $
    Conrady$n = A + \dfrac{B}{\lambda } + \dfrac{C}{{{\lambda ^{3.5}}}}$
    Herzberger$n = A + B \cdot {\lambda ^2} + C \cdot {\lambda ^2} + \dfrac{D}{{\left( {{\lambda ^2} - 0.028} \right)}} + \dfrac{E}{{{{\left( {{\lambda ^2} - 0.028} \right)}^2}}}$
    Table 1. [in Chinese]
    λTMTmndm0mn0d0
    972.40.92020.50072.91736.0016.02.91691000.0
    911.20.91990.49042.96136.5016.52.96111000.0
    859.00.91930.48013.00661000.07.0027.03.00621000.0
    814.10.91830.46973.05271000.47.5017.53.05261000.1
    774.90.91650.45913.09961000.18.0028.03.09931000.0
    740.50.91340.44853.1471999.58.5028.53.14681000.0
    710.00.90800.43763.1951999.79.0029.03.19471000.0
    682.80.89840.42603.2435999.49.5029.53.2430999.9
    658.40.88180.41323.29211000.210.00210.03.29171000.0
    636.30.85300.39823.3410999.310.50310.53.3402999.9
    616.30.80500.37963.3898999.611.00311.03.3893999.9
    598.10.72520.35463.43351020.411.48311.53.43871001.6
    581.30.61270.31913.48781000.612.00212.03.48741000.0
    565.90.45950.26783.5368981.912.50212.53.53651000.0
    551.70.28790.19653.58561001.613.00113.03.58571000.1
    注: $ \qquad \quad \overline d = 1000.2;{\sigma _1} = 7.58;\overline {{d_0}} = 1000.1;{\sigma _0} = 0.40$.
    Table 2.

    Values of λ, TM, and Tm obtained in Fig. 2 and the values of n and d calculated by the improved Swanepoel method

    图2中数据获得的λ, TMTm的值以及通过改进后的Swanepoel方法计算的nd

    波长/nmGe20Sb15Se65薄膜 Ge28Sb12Se60薄膜
    TexpTMmnTexpTMmn
    6000.24490.26828.73312.69020.00090.025313.37932.8670
    6200.34630.40368.01312.65300.04170.072612.76202.8259
    6400.49870.54967.41602.62080.11070.095712.20732.7902
    6600.47490.68456.91062.59290.24490.251911.70572.7592
    6800.77240.78916.47602.56850.29140.395711.24952.7320
    7000.65660.85526.09722.54720.52220.526611.02592.7081
    7500.90880.90965.76342.50410.74690.785310.10682.6597
    8000.61600.92195.46652.47200.61550.91239.34552.6233
    9000.61990.93214.96022.42850.86670.96818.14942.5735
    10000.76660.93884.54332.40140.75470.97357.24482.5420
    11000.80850.94294.19322.38350.61240.97736.53162.5210
    12000.75800.94553.89452.37110.96780.98055.95232.5062
    13000.68500.94723.63642.36220.61860.98135.47092.4955
    14000.94180.94803.41092.35560.95560.98065.06382.4875
    15000.78140.94823.21212.35060.72820.98014.71452.4813
    16000.65210.94793.03562.34660.64300.98004.41122.4765
    17000.72440.94742.87762.34350.88530.98004.14522.4726
    18000.89140.94703.12132.34100.93830.98013.90992.4694
    19000.93840.94702.95442.33890.71640.98013.70022.4668
    20000.82490.94762.80462.33720.62820.98003.51212.4647
    21000.71210.94912.66942.33580.68680.98003.28382.4628
    22000.66140.95182.54682.33450.84110.98013.13252.4613
    23000.66790.95592.43492.33350.97050.98042.99472.4599
    24000.71880.96172.33262.33260.94410.98092.86862.4588
    Table 3.

    Refractive index at multiple wavelengths of two thin films obtained by MCM.

    多点柯西法获得的两种薄膜多个波长处的折射率

    拉曼峰位/cm–1振动模式
    160Se2Sb-SbSe2结构中的Sb—Sb同极键的振动
    170Ge2Se6/2结构中的Ge—Ge同极键的伸缩振动
    197SbSe3/2三角锥结构中的Sb—Se键的E1模式振动
    203共顶角GeSe4/2四面体中的Ge—Se键的V1模式振动
    215共边GeSe4/2四面体中的Ge—Se键振动
    235Sen环结构中的Se—Se键振动
    256Sen链结构中的Se—Se键振动
    270Ge-GemSe4-m结构中的Ge—Ge同极键的振动
    303GeSe4四面体的F2型不对称振动
    Table 4.

    Vibration modes in the Raman spectrum of Ge-Sb-Se system.

    Ge-Sb-Se薄膜拉曼光谱中对应的振动模式

    Lei Pan, Bao-An Song, Chuan-Fu Xiao, Pei-Qing Zhang, Chang-Gui Lin, Shi-Xun Dai. Optical properties and microstructure of two Ge-Sb-Se thin films[J]. Acta Physica Sinica, 2020, 69(11): 114201-1
    Download Citation