• Optoelectronics Letters
  • Vol. 19, Issue 2, 77 (2023)
Yuanyuan XU, Yan GENG*, Yu LIANG, Furui TANG, Yujuan SUN, and Yawei and WANG
Author Affiliations
  • School of Physics and Electrical Engineering, Jiangsu University, Zhenjiang 212013, China
  • show less
    DOI: 10.1007/s11801-023-2144-8 Cite this Article
    XU Yuanyuan, GENG Yan, LIANG Yu, TANG Furui, SUN Yujuan, and WANG Yawei. Research on the design of metalens with achromatic and amplitude modulation[J]. Optoelectronics Letters, 2023, 19(2): 77 Copy Citation Text show less
    References

    [1] LIN R Y, WU Y F, FU B Y, et al. Application of chromatic aberration control of metalens[J]. Chinese optics, 2021, 14(04):764-781.

    [2] FU B Y, ZOU X J, LI T, et al. Review:chromatic dispersion manipulation based on optical metasurfaces[J]. Journal of Harbin Institute of Technology, 2020, 27(3):1-19.

    [3] SMITH D, PENDRY J, WILTSHIRE M. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.

    [4] NGYTEN T, LE D, BUI S, et al. Plasmonic hybridization in symmetric metamaterial for broadband negative refractive index:simulation, experiment and characterization[J]. Journal of physics D:applied physics, 2020, 53(17):175501.

    [5] RASAD A, YUDISTIRA H, QALBINA F, et al. Multilayer flexible metamaterials based on circular shape with negative refractive index at microwave spectrum[J]. Sensors and actuators A:physical, 2021, 332: 113208.

    [6] NING L, WANG Y Z, WANG Y S. Broadband square cloak in elastic wave metamaterial plate with active control[J]. Journal of the Acoustical Society of America, 2021, 150(6):4343-4352.

    [7] ZHANG H K, CHEN Y, LIU X N, et al. An asymmetric elastic metamaterial model for elastic wave cloaking[J]. Journal of the mechanics and physics of solids, 2020, 135:103796.

    [8] ZOU X J, ZHENG G G, YUAN Q, et al. Imaging based on metalenses[J]. PhotoniX, 2020, 1(2).

    [9] FAN Q, XU W, HU X, et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depthof-field[J]. Nature communications, 2022, 13(1):1-10.

    [10] YU N, GEMEVET P, KATS M, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.

    [11] KHORASANINEJAD M, AIETA F, KANHAIYA P, et al. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano letters, 2015, 15(8):5358-5362.

    [12] ARBABI E, ARBABI A, KAMALI S, et al. Multiwavelength metasurfaces through spatial multiplexing[J]. Scientific reports, 2016, 6:32803.

    [13] KHORASANINEJAD M, SHI Z, ZHU A, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano letters, 2017, 17(3):1819-1824.

    [14] WANG S, WU P C, CHEN J W, et al. Broadband achromatic optical metasurface devices[J]. Nature communications, 2017, 8(1):187.

    [15] ZHAO F, LI Z P, DAI X M, et al. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens[J]. Advanced optical materials, 2020, 8(21):1-11.

    [16] MCCLUNG A, MANSOUREE M, ARBABI A. At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces[J]. Light:science & applications, 2020, 9(1):1-9.

    XU Yuanyuan, GENG Yan, LIANG Yu, TANG Furui, SUN Yujuan, and WANG Yawei. Research on the design of metalens with achromatic and amplitude modulation[J]. Optoelectronics Letters, 2023, 19(2): 77
    Download Citation