[1] Shukla M K, Maji P S, Das R. Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator[J]. Optics Letters, 41, 3033-3036(2016).
[2] Zlobina E A, Kablukov S I, Babin S A. Tunable CW all-fiber optical parametric oscillator operating below 1 μm[J]. Optics Express, 21, 6777-6782(2013).
[3] Zeng X, Cui S Z, Cheng X et al. Resonant frequency doubling of phase-modulation-generated few-frequency fiber laser[J]. Optics Letters, 45, 4944-4947(2020).
[4] Zhao X, Shen H, Bai G et al. High brightness, high SNR radio-frequency signal generated by an all-fibered linear-polarization single-mode dual-frequency fiber laser[J]. Optics Express, 25, 27051-27059(2017).
[5] Tünnermann H, Pöld J H, Neumann J et al. Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers[J]. Optics Express, 19, 19600-19606(2011).
[6] Wei L W, Cleva F, Man C N. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo[J]. Optics Letters, 41, 5817-5820(2016).
[7] Chen F, Ma J, Wei C et al. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters[J]. Optics Express, 25, 32783-32791(2017).
[8] Zheng Y, Yang Y F, Wang J H et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 24, 12063-12071(2016).
[9] Dajani I, Flores A, Holten R et al. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers[J]. Proceedings of SPIE, 9728, 972801(2016).
[10] McNaught S J, Asman C P, Injeyan H et al. 100-kW coherently combined Nd:YAG MOPA laser array[C], FThD2-15(2009).
[11] Augst S J, Ranka J K, Fan T Y et al. Beam combining of ytterbium fiber amplifiers (Invited)[J]. Journal of the Optical Society of America B, 24, 1707-1715(2007).
[12] Richardson D J, Nilsson J, Clarkson A W. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[13] Ke W W, Wang X J, Bao X F et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers[J]. Optics Express, 21, 14272-14281(2013).
[14] Agrawal G P[M]. Nonlinear fiber optics(2007).
[15] Jauregui C, Eidam T, Otto H J et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 20, 12912-12925(2012).
[16] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).
[17] Otto H J, Stutzki F, Jansen F et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 20, 15710-15722(2012).
[18] Boyd R W[M]. Nonlinear optics(2020).
[19] Shiner B. The impact of fiber laser technology on the world wide material processing market[C], AF2J.1(2013).
[20] Xi X M, Yang B L, Zhang H W et al. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 35, 021001(2023).
[21] Wang P, Xi X M, Zhang H W et al. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 34, 121001(2022).
[22] Du S S, Qi T C, Li D et al. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS[J]. IEEE Photonics Technology Letters, 34, 721-724(2022).
[23] Lin A X, Zhan H, Peng K et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 30, 060101(2018).
[24] Shi J H, Du T Y, Ma G M et al. Domestically developed industrial fiber lasers achieve stable output power of 22.07 kW per single fiber[J]. Chinese Journal of Lasers, 49, 2416003(2022).
[25] Chen X L, Lou F G, He Y et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).
[26] Liao S B, Luo T, Xiao R H et al. 3.2 kW, 0.22 nm narrow-linewidth MOPA configuration fiber laser with a homemade polarization-maintaining Yb-doped fiber[J]. Frontiers in Physics, 11, 141(2023).
[27] Xi X M, Wang M, Tian X et al. Record high-power narrow-linewidth fiber laser based on one-stage master oscillator power amplification configuration[J]. Chinese Journal of Lasers, 49, 1115001(2022).
[28] Qi Y F, Lei M, Liu C et al. 1.75 kW CW narrow linewidth Yb-doped all-fiber amplifiers for beam combining application[C], ATu4M.4-15(2015).
[29] Qi Y F, Yang Y F, Shen H et al. 2.7 kW CW narrow linewidth Yb-doped all-fiber amplifiers for beam combining application[C], ATu3A.1-5(2017).
[30] Li R X, Wang C W, Ye J et al. 6 kW superfluorescent fiber light source[J]. Chinese Journal of Lasers, 50, 2215001(2023).
[31] Zhang J P, Bai G, Li X W et al. 1.36-kW spectral-narrowing fiber laser seeded by random fiber laser[J]. IEEE Photonics Technology Letters, 31, 1343-1346(2019).
[32] Li T L, Li Y, Ke W W et al. Power scaling of narrow-linewidth fiber amplifier seeded by Yb-doped random fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903208(2018).
[33] Zeringue C, Dajani I, Naderi S et al. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light[J]. Optics Express, 20, 21196-21213(2012).
[34] Supradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 21, 4677-4687(2013).
[35] Anderson B, Flores A, Holten R et al. Comparison of phase modulation schemes for coherently combined fiber amplifiers[J]. Optics Express, 23, 27046-27060(2015).
[36] Belgabad A A, Bananej A, Eslami E. Comparison between threshold and sensitivity of stimulated Brillouin scattering at different pumping configurations in high-power double-clad fiber lasers[J]. Optik, 126, 4924-4928(2015).
[37] Naderi N A, Flores A, Anderson B M et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition[J]. Optics Letters, 41, 3964-3967(2016).
[38] Boggio J M C, Marconi J D, Fragnito H L. Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions[J]. Journal of Lightwave Technology, 23, 3808-3814(2005).
[39] Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 31, 161-163(2006).
[40] Liu A P. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express, 15, 977-984(2007).
[41] Karow M, Neumann J, Kracht D et al. Impact of amplified spontaneous emission on Brillouin scattering of a single-frequency signal[J]. Optics Express, 20, 10572-10582(2012).
[42] Anderson B M, Flores A, Dajani I. Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression[J]. Optics Express, 25, 17671-17682(2017).
[43] Lai W C, Ma P F, Liu W et al. Seeding high brightness fiber amplifiers with multi-phase coded signal modulation for SBS effect management[J]. IEEE Access, 8, 127682-127689(2020).
[44] Shi M Y, Wu Z L, Li J et al. High-power narrow-linewidth fiber lasers using optical spectrum broadening based on high-order phase modulation of inversion probability-tuning sequence[J]. Optics Express, 30, 8448-8460(2022).
[45] Li J, Shi M Y, Wu Y et al. Spectral broadening scheme for suppressing SBS effects based on time-domain optimized chirp-like signals[J]. Optics Express, 31, 8610-8621(2023).
[46] Shi M Y, Yu M H, Fang Z W et al. Real-time definite sequence modulation based spectral broadening scheme for high-power narrow-linewidth fiber laser[J]. Journal of Lightwave Technology, 40, 6222-6229(2022).
[47] Flores A, Robin C, Lanari A et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 22, 17735-17744(2014).
[48] Yang Y F, Shen H, Chen X L et al. Fully fiberized high-efficiency, narrow linewidth fiber laser achieves a near-diffraction-limited output of 2.5 kW[J]. Chinese Journal of Lasers, 43, 0419004(2016).
[49] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).
[50] Su R T, Tao R M, Wang X L et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 14, 085102(2017).
[51] Zhao X, Yang Y F, Shen H et al. 302 W triple-frequency, single-mode, linearly polarized Yb-doped all-fiber amplifier[J]. High Power Laser Science and Engineering, 5, e31(2017).
[52] Li T L, Zha C W, Sun Y H et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser[J]. Laser Physics, 28, 105101(2018).
[53] Shen H, Lou Q H, Quan Z et al. Narrow-linewidth all-fiber amplifier with up to 3.01 kW output power based on commercial 20/400 μm active fiber and counterpumped configuration[J]. Applied Optics, 58, 3053-3058(2019).
[54] Lin H, Tao R, Li C et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 27, 9716-9724(2019).
[55] Chang Z, Wang Y S, Sun Y H et al. 1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering[J]. Applied Optics, 58, 6419-6425(2019).
[56] Lai W C, Meng D R, He X B et al. Kilowatt-level, mode-instability-free, all-fiber and polarization-maintained amplifier with spectral linewidth of 1.8 GHz[C](2018).
[57] Liu M Z, Yang Y F, Shen H et al. 1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap[J]. Scientific Reports, 10, 629(2020).
[58] Wang Y S, Feng Y J, Ma Y et al. 2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing[J]. IEEE Photonics Journal, 12, 1502815(2020).
[59] Chu Q H, Shu Q, Liu Y et al. 3 kW high OSNR 1030 nm single-mode monolithic fiber amplifier with a 180 pm linewidth[J]. Optics Letters, 45, 6502-6505(2020).
[60] Ma P F, Xiao H, Liu W et al. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration[J]. High Power Laser Science and Engineering, 9, e45(2021).
[61] Wang Y S, Sun Y H, Peng W J et al. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 60, 6331-6336(2021).
[62] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).
[63] Shen H, Zhang L, Li Q R et al. Based on the self-developed 25 μm/400 μm active optical fiber, a 0.25 nm, 4.23 kW all-fiber single-mode laser is achieved[J]. Chinese Journal of Lasers, 49, 1116001(2022).
[64] Ren S, Ma P F, Li W et al. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality[J]. Nanomaterials, 12, 2541(2022).
[65] Wang G J, Song J X, Chen Y S et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 10, e22(2022).
[66] Wang Y S, Peng W J, Wang J et al. 4.45 kW narrow linewidth polarized near single mode all-fiber laser[J]. Chinese Journal of Lasers, 49, 1816003(2022).
[67] Gu Q, Zhao Q L, Yang C S et al. 2.02 kW and 4.7 GHz linewidth near-diffraction-limited all-fiber MOPA laser[J]. Applied Physics Express, 15, 032001(2022).
[68] Cao J, Chen X L, Yang Y F et al. 4.9-kW narrow-linewidth single-fiber laser based on cascaded phase modulation[J]. Chinese Journal of Lasers, 50, 1001005(2023).
[69] Ren S, Ma P F, Chen Y S et al. 5 kW-level narrow linewidth fiber laser output realized by homemade polarization-maintained fiber[J]. Infrared and Laser Engineering, 52, 20220900(2023).
[70] Chu Q H, Shu Q, Li F Y et al. Power scaling of high-power linearly polarized fiber lasers with <10 GHz linewidth[J]. Frontiers in Physics, 11, 1198305(2023).
[71] Wang Y S, Peng W J, Wang J et al. Output of 4 kW <10 GHz narrow linewidth linear polarization near diffraction limit fiber laser[J]. High Power Laser and Particle Beams, 35, 089901(2023).
[72] Wang Y S, Feng Y J, Peng W J et al. 5 kW near diffraction limit high extinction ratio narrow linewidth polarization maintaining fiber laser[J]. High Power Laser and Particle Beams, 34, 112002(2022).
[73] Kim D J, Koo J, Jun S W et al. A 2 kW, 8 GHz-linewidth Yb-doped polarization-maintained fiber laser with quasi-flat-top pseudo random binary sequence phase modulation for SBS suppression[J]. Nanomaterials, 13, 1329(2023).
[74] Shi M Y, Li J, Wu Y et al. High SBS threshold fiber laser with spectral management using binarized multi-tone signal modulation[J]. IEEE Photonics Technology Letters, 35, 513-516(2023).
[75] Wang Y S, Peng W J, Wang J et al. A 10 GHz narrow linewidth, polarization-maintaining, nearly single-mode all-fiber laser achieves a power output of 5 kW[J]. Chinese Journal of Lasers, 50, 2416002(2023).
[76] Yang Y F, Li B L, Liu M Z et al. Optimization and visualization of phase modulation with filtered and amplified maximal-length sequence for SBS suppression in a short fiber system: a theoretical treatment[J]. Optics Express, 29, 16781-16803(2021).
[77] Li B L, Liu M Z, Yang Y F et al. Effective Brillouin gain spectra broadening for SBS suppression based on pseudo random bit sequence phase modulation in fiber system[J]. IEEE Photonics Journal, 13, 7100105(2021).
[78] Liu M Z, Li B L, Yang Y F et al. Instantaneous response and suppression of SBS process in a short fiber system with binary sequence phase modulation[J]. Optics Letters, 46, 5802-5805(2021).
[79] Li B L, Liu M Z, Yang Y F et al. Theoretical and experimental investigation of piecewise parabolic phase modulation for SBS suppression in fiber system[J]. IEEE Journal of Quantum Electronics, 58, 6800109(2022).
[80] Tei K, Yamaguchi S. Suppression of stimulated Brillouin scattering in optical fibers using a stepwise optical frequency pulse train[J]. Optics Express, 28, 17793-17800(2020).
[81] Goodno G D, McNaught S J, Rothenberg J E et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 35, 1542-1544(2010).
[82] Wang Y S, Yan H, Peng W J et al. 1 kW narrow linewidth polarized fiber laser based on active polarization control[J]. Chinese Journal of Lasers, 43, 0519001(2016).
[83] Wang Y S, Feng Y J, Wang X J et al. 6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control[J]. Applied Optics, 56, 2760-2765(2017).
[84] Su R T, Liu Y K, Yang B L et al. Active polarization control of a 1.43 kW narrow linewidth fiber amplifier based on SPGD algorithm[J]. Journal of Optics, 19, 045802(2017).
[85] Ahmadi P, Creeden D, Aschaffenburg D et al. Generating kW laser light at 532 nm via second harmonic generation of a high power Yb-doped fiber amplifier[J]. Proceedings of SPIE, 11264, 1126414(2020).
[86] Ren S, Chang H X, Ma P F et al. 3.38 kW all-fiberized narrow linewidth fiber laser based on active polarization control using RMS-Prop algorithm[J]. Optics & Laser Technology, 166, 109634(2023).
[87] Daniel J M O, Clarkson W A. Rapid, electronically controllable transverse mode selection in a multimode fiber laser[J]. Optics Express, 21, 29442-29448(2013).
[88] Huang L J, Leng J Y, Zhou P et al. Adaptive mode control of a few-mode fiber by real-time mode decomposition[J]. Optics Express, 23, 28082-28090(2015).
[89] Su R T, Yang B L, Xi X M et al. 500 W level MOPA laser with switchable output modes based on active control[J]. Optics Express, 25, 23275-23282(2017).
[90] You Y, Bai G, Zou X X et al. A 1.4-kW mode-controllable fiber laser system[J]. Journal of Lightwave Technology, 39, 2536-2541(2021).
[91] Zhao H C, Wang X L, Ma H T et al. Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam[J]. Applied Optics, 50, 4389-4392(2011).
[92] Lu P, Shipton M, Wang A B et al. Adaptive control of waveguide modes in a two-mode-fiber[J]. Optics Express, 22, 2955-2964(2014).
[93] Wu H S, Xu J T, Huang L J et al. High-power fiber laser with real-time mode switchability[J]. Chinese Optics Letters, 20, 021402(2022).
[94] Wu H S, Lu J F, Huang L J et al. All-fiber laser with agile mode-switching capability through intra-cavity conversion[J]. IEEE Photonics Journal, 12, 1500709(2020).
[95] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).
[96] Cao J Q, Guo S F, Xu X J et al. Investigation on power scalability of diffraction-limited Yb-doped fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0903211(2014).
[97] Yang L. High power narrow-line fiber laser research and engineering[D](2017).
[98] Shiner B. The fibre laser: delivering power[J]. Nature Photonics, 4, 290(2010).
[99] Shi W, Fang Q, Zhu X S et al. Fiber lasers and their applications[J]. Applied Optics, 53, 6554-6568(2014).
[100] Beyer E, Mahrle A, Lütke M et al. Innovations in high power fiber laser applications[J]. Proceedings of SPIE, 8237, 823717(2012).
[101] Sprangle P, Ting A, Penano J et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Quantum Electronics, 45, 138-148(2009).
[102] Sprangle P, Hafizi B, Ting A et al. High-power lasers for directed-energy applications[J]. Applied Optics, 54, F201-F209(2015).
[103] Minden M L. Passive coherent combining of fiber oscillators[J]. Proceedings of SPIE, 6453, 64530P(2007).
[104] Goodno G D, Komine H, McNaught S J et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 31, 1247-1249(2006).
[105] He B, Lou Q H, Zhou J et al. 113-W in-phase mode output from two ytterbium-doped large-core double-cladding fiber lasers[J]. Chinese Optics Letters, 5, 412-414(2007).
[106] He B, Lou Q H, Wang W et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator[J]. Applied Physics Letters, 92, 251115(2008).
[107] Xue Y H, He B, Zhou J et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 28, 054212(2011).
[108] Swanson G J, Leger J R, Holz M. Aperture filling of phase-locked laser arrays[J]. Optics Letters, 12, 245-247(1987).
[109] Pabœuf D, Emaury F, de Rossi S et al. Coherent beam superposition of ten diode lasers with a Dammann grating[J]. Optics Letters, 35, 1515-1517(2010).
[110] Yan A M, Liu L R, Dai E W et al. Simultaneous beam combination and aperture filling of coherent laser arrays by conjugate Dammann gratings[J]. Optics Letters, 35, 1251-1253(2010).
[111] Li B, Dai E W, Yan A M et al. Simulations of conjugate Dammann grating based 2D coherent solid-state laser array combination[J]. Optics Communications, 290, 126-131(2013).
[112] Liu H K, He B, Zhou J et al. Coherent beam combination of two nanosecond fiber amplifiers by an all-optical feedback loop[J]. Optics Letters, 37, 3885-3887(2012).
[113] Liu H K, He B, Zhou J et al. Experiments and perturbative analysis of dammann-grating-based aperture filling in a passive coherent beam combination[J]. Journal of Lightwave Technology, 32, 2220-2227(2014).
[114] Yang Y F, Hu M, He B et al. Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source[J]. Optics Letters, 38, 854-856(2013).
[115] Hu M, Zheng Y, Yang Y F et al. Widely tunable repetition-rate and pulse-duration nanosecond pulses from two spectral beam combined fiber amplifiers[J]. Journal of Optics, 18, 105501(2016).
[116] Hu M, Zheng Y, Yang Y F et al. Nanosecond double-pulse fiber laser with arbitrary sub-pulse combined based on a spectral beam combining system[J]. Optics & Laser Technology, 90, 22-26(2017).
[117] Chang H X, Chang Q, Hou T Y et al. Coherent synthesis of hundred-beam scale fiber laser[J]. Chinese Journal of Lasers, 47, 0916002(2020).
[118] von Elm R, Marois C. Beam-combiner for fiber-delivered laser-beams of different wavelengths[P].
[119] Lee C Y, Kim B K, Hong S S et al. Multi beam laser apparatus[P].
[120] Gold R S, Jachimowicz K E. Beam combining/splitter cube prism for color polarization[P].
[121] Pickering R D. Beam combining prism[P].
[122] Cheung E C, Ho J G, Goodno G D et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 33, 354-356(2008).
[123] Sevian A, Andrusyak O, Ciapurin I et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Optics Letters, 33, 384-386(2008).
[124] Liang X B, Chen L M, Li C et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle Beams, 27, 071012(2015).
[125] Perry M D, Shannon C, Shults E et al. High-efficiency multilayer dielectric diffraction gratings[J]. Optics Letters, 20, 940-942(1995).
[126] Shore B W, Perry M D, Britten J A et al. Design of high-efficiency dielectric reflection gratings[J]. Journal of the Optical Society of America A, 14, 1124-1136(1997).
[127] Loftus T H, Liu A P, Hoffman P R et al. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Optics Letters, 32, 349-351(2007).
[128] Honea E, Afzal R S, Savage-Leuchs M et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[J]. Proceedings of SPIE, 8601, 860115(2013).
[129] Honea E, Afzal R S, Savage-Leuchs M et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 9730, 97300Y(2015).
[131] Wirth C, Schmidt O, Tsybin I et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Optics Express, 17, 1178-1183(2009).
[132] Wirth C, Schmidt O, Tsybin I et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 36, 3118-3120(2011).
[133] Liu A P, Mead R, Vatter T et al. Spectral beam combining of high power fiber lasers[J]. Proceedings of SPIE, 5335, 81-88(2004).
[134] Madasamy P, Jander D, Brooks C et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 337-343(2009).
[135] Ma Y, Yan H, Tian F et al. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 27, 040101(2015).
[136] Ma Y, Yan H, Peng W J et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 43, 0901009(2016).
[137] Zheng Y, Yang Y F, Wang J H et al. Effective dispersion compensation of variable-linewidth fiber amplifier by singlemultilayer dielectric grating[J]. Journal of Optics, 18, 065610(2016).
[138] Bai G, Shen H, Yang Y F et al. Theoretical analysis of beam quality degradation in spectral beam combining of fiber laser array with beam deviation[J]. Optics & Laser Technology, 105, 281-287(2018).
[139] Bai G, Shen H, Zhang J P et al. Analysis of beam characteristic in the single and dual grating spectral beam combining of fiber laser array with pointing deviation[J]. Journal of the Optical Society of America B, 36, 2154-2158(2019).
[140] Liu L, Vorontsov M A. Phase-locking of tiled fiber array using SPGD feedback controller[J]. Proceedings of SPIE, 5895, 138-146(2005).
[141] Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept[J]. Proceedings of SPIE, 5895, 589501(2005).
[142] Yu C X, Augst S J, Redmond S M et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011).
[143] Fsaifes I, Daniault L, Bellanger S et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 28, 20152-20161(2020).
[144] Wang X L, Zhou P, Ma Y X et al. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm[J]. Acta Physica Sinica, 59, 973-979(2010).
[145] Wang X L, Zhou P, Ma Y X et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Optics Letters, 36, 3121-3123(2011).
[146] Wang X, Leng J, Zhou P et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Applied Physics B, 107, 785-790(2012).
[147] Su R T, Zhou P, Wang X L et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 26, 110101(2014).
[148] Su R T, Ma Y X, Xi J C et al. High-efficiency coherent synthesis of 60-channel array optical fiber lasers[J]. Infrared and Laser Engineering, 48, 410073(2019).
[149] Tünnermann H, Shirakawa A. Deep reinforcement learning for tiled aperture beam combining in a simulated environment[J]. Journal of Physics: Photonics, 3, 015004(2021).
[150] Wang D, Du Q, Zhou T et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 29, 5694-5709(2021).
[151] Du Q, Wang D, Zhou T et al. Experimental beam combining stabilization using machine learning trained while phases drift[J]. Optics Express, 30, 12639-12653(2022).
[152] Kienel M, Müller M, Klenke A et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 41, 3343-3346(2016).
[153] Stark H, Buldt J, Müller M et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 44, 5529-5532(2019).
[154] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).