• High Power Laser and Particle Beams
  • Vol. 33, Issue 12, 123013 (2021)
Hao Yang1、2, Eryan Yan1、3, Yong Nie1、2, Chuan Yu1、3、*, Xiangyang Bao1, Qianglin Zheng1, and Haiying Hu1
Author Affiliations
  • 1Institute of Applied Electronics, CAEP, Mianyang 621900, China
  • 2Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • 3Science and Technology on High Power Microwave Laboratory, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202133.210365 Cite this Article
    Hao Yang, Eryan Yan, Yong Nie, Chuan Yu, Xiangyang Bao, Qianglin Zheng, Haiying Hu. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33(12): 123013 Copy Citation Text show less
    References

    [1] Barker R, Edi S. High power microwave source technology[M]. Beijing: Tsinghua University Press, 2005: 154158.

    [3] Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 21, 013103(2014).

    [4] Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 23, 033507(2016).

    [5] Nusinovich G S, Pu Ruifeng, Antonsen Jr T M, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 380-402(2011).

    [6] Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 111, 124912(2012).

    [7] Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 13, 013506(2006).

    [8] Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 18, 013502(2011).

    [9] Kim D, Yu D, Sawant A, et al. Remote detection of radioactive material using high-power pulsed electromagnetic radiation[J]. Nature Communications, 8, 15394(2017).

    [11] Cook A M, Hummelt J S, Shapiro M A, et al. Measurements of electron avalanche formation time in W-band microwave air breakdown[J]. Physics of Plasmas, 18, 080707(2011).

    [12] Edmiston G, Krile J, Neuber A, et al. High-power microwave surface flashover of a gas–dielectric interface at 90–760 torr[J]. IEEE Transactions on Plasma Science, 34, 1782-1788(2006).

    [16] Hidaka Y, Choi E M, Mastovsky I, et al. Imaging of atmospheric air breakdown caused by a high-power 110-GHz pulsed Gaussian beam[J]. IEEE Transactions on Plasma Science, 36, 936-937(2008).

    [17] Zhou Qianhong, Dong Zhiwei. Modeling study on pressure dependence of plasma structure and formation in 110 GHz microwave air breakdown[J]. Applied Physics Letters, 98, 161504(2011).

    [18] Cook A, Shapiro M, Temkin R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz[J]. Applied Physics Letters, 97, 011504(2010).

    [19] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 14, 722-733(2005).

    [20] Phelps A V, Pitchford L C. Anisotropic scattering of electrons by N2 and its effect on electron transport[J]. Physical Review A, 31, 2932-2949(1985).

    [21] SIGLO database[EBOL]. [20130604]. http:www.lxcat.laplace.univtlse.fr.

    [22] Lawton S A, Phelps A V. Excitation of the b1Σ+g state of O2 by low energy electrons[J]. The Journal of Chemical Physics, 69, 1055-1068(1978).

    [23] PHELPS database[EBOL]. http:www.lxcat.laplace.univtlse.fr, retrieved June 4, 2013NOTE: 3 body attachment cross section are nmalized to gas density in units of cm.

    Hao Yang, Eryan Yan, Yong Nie, Chuan Yu, Xiangyang Bao, Qianglin Zheng, Haiying Hu. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33(12): 123013
    Download Citation