• Photonics Research
  • Vol. 10, Issue 9, 2107 (2022)
Ting Wang1、2, Ji-Liang Wu1、2, Xu-Cheng Zhang3, Yang Shi1、2, Yue-De Yang1、2, Jin-Long Xiao1、2, Da-Ming Zhang3, Guan-Shi Qin3, and Yong-Zhen Huang1、2、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductorshttps://ror.org/048dd0611, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.1364/PRJ.462644 Cite this Article Set citation alerts
    Ting Wang, Ji-Liang Wu, Xu-Cheng Zhang, Yang Shi, Yue-De Yang, Jin-Long Xiao, Da-Ming Zhang, Guan-Shi Qin, Yong-Zhen Huang. Octave-spanning frequency comb generation based on a dual-mode microcavity laser[J]. Photonics Research, 2022, 10(9): 2107 Copy Citation Text show less
    References

    [1] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [2] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [3] S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland. An optical clock based on a single trapped 199Hg+ ion. Science, 293, 825-828(2001).

    [4] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clocks. Rev. Mod. Phys., 87, 637-701(2015).

    [5] T. Nakamura, I. Ito, Y. Kobayashi. Offset-free broadband Yb:fiber optical frequency comb for optical clocks. Opt. Express, 23, 19376-19381(2015).

    [6] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2007).

    [7] J. D. Gaynor, T. L. Courtney, M. Balasubramanian, M. Khalil. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe. Opt. Lett., 41, 2895-2898(2016).

    [8] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [9] K. Minoshima, K. Arai, H. Inaba. High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs. Opt. Express, 19, 26095-26105(2011).

    [10] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [11] V. Torres-Company, J. Schroder, A. Fulop, M. Mazur, L. Lundberg, O. B. Helgason, M. Karlsson, P. A. Andrekson. Laser frequency combs for coherent optical communications. J. Lightwave Technol., 37, 1663-1670(2019).

    [12] L. Lundberg, M. Mazur, A. Mirani, B. Foo, J. Schroder, V. Torres-Company, M. Karlsson, P. A. Andrekson. Phase-coherent lightwave communications with frequency combs. Nat. Commun., 11, 201(2020).

    [13] S. T. Cundiff, A. M. Weiner. Optical arbitrary waveform generation. Nat. Photonics, 4, 760-766(2010).

    [14] M. Tan, X. Xu, A. Boes, B. Corcoran, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J. Lightwave Technol., 38, 6221-6226(2020).

    [15] F. Z. Zhang, J. Wu, Y. Li, J. T. Lin. Flat optical frequency comb generation and its application for optical waveform generation. Opt. Commun., 290, 37-42(2013).

    [16] E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi, A. Ghedina, E. Molinari, S. Kundermann, S. Lecomte, F. Pepe, F. Wildi, F. Bouchy, T. Herr. Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb. Opt. Express, 26, 34830-34841(2018).

    [17] K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, V. R. Supradeepa. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt. Express, 26, 10744-10753(2018).

    [18] Z. Z. Lu, H. J. Chen, W. Q. Wang, L. Yao, Y. Wang, Y. Yu, B. E. Little, S. T. Chu, Q. H. Gong, W. Zhao, X. Yi, Y. F. Xiao, W. F. Zhang. Synthesized soliton crystals. Nat. Commun., 12, 3179(2021).

    [19] J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, C. Koos. Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator. Opt. Express, 24, 25432-25445(2016).

    [20] E. Lucas, P. Brochard, R. Bouchand, S. Schilt, T. Sudmeyer, T. J. Kippenberg. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020).

    [21] D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti-sapphire laser. Opt. Lett., 16, 42-44(1991).

    [22] E. Sorokin, S. Naumov, I. T. Sorokina. Ultrabroadband infrared solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 11, 690-712(2005).

    [23] Y. M. Chang, H. Kim, J. H. Lee, Y.-W. Song. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett., 97, 211102(2010).

    [24] A. Bartels, D. Heinecke, S. A. Diddams. 10-GHz self-referenced optical frequency comb. Science, 326, 681(2009).

    [25] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [26] V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, T. J. Kippenberg. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl., 6, e16202(2017).

    [27] H. Weng, J. Liu, A. A. Afridi, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, J. F. Donegan, W. Guo. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res., 9, 1351-1357(2021).

    [28] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Loncar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [29] A. Parriaux, K. Hammani, G. Millot. Electro-optic frequency combs. Adv. Opt. Photon., 12, 223-287(2020).

    [30] M. Song, S. P. Han, J. Park, H. Choi, S. Kim, T. T. Tran, H. D. Kim, M. Song. Flat-top supercontinuum generation via Gaussian pulse shaping. Opt. Express, 29, 12001-12009(2021).

    [31] K. P. Nagarjun, B. S. Vikram, R. Prakash, A. Singh, S. K. Selvaraja, V. R. Supradeepa. Optical frequency comb based on nonlinear spectral broadening of a phase modulated comb source driven by dual offset locked carriers. Opt. Lett., 45, 893-896(2020).

    [32] Z. He, L. Li, J. Zhang, J. Yao. Low jitter microwave pulse train generation based on an optoelectronic oscillator. Opt. Express, 29, 33491-33501(2021).

    [33] K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, S. B. Papp. Electronic synthesis of light. Optica, 4, 406-411(2017).

    [34] D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, S. B. Papp. Ultrafast electro-optic light with subcycle control. Science, 361, 1358-1362(2018).

    [35] A. Cerqueira, J. M. C. Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, J. C. Knight. Highly efficient generation of broadband cascaded four-wave mixing products. Opt. Express, 16, 2816-2828(2008).

    [36] E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt. Express, 20, 3331-3344(2012).

    [37] V. Ataie, E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic. Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping. J. Lightwave Technol., 32, 840-846(2014).

    [38] T. Inoue, S. Namiki. Pulse compression techniques using highly nonlinear fibers. Laser Photon. Rev., 2, 83-99(2008).

    [39] M. Zajnulina, J. M. C. Boggio, M. Bohm, A. A. Rieznik, T. Fremberg, R. Haynes, M. M. Roth. Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy. Appl. Phys. B, 120, 171-184(2015).

    [40] X. Zhang, J. Zhang, K. Yin, Y. Li, X. Zheng, T. Jiang. Sub-100 fs all-fiber broadband electro-optic optical frequency comb at 15 μm. Opt. Express, 28, 34761-34771(2020).

    [41] R. G. Smith. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin-scattering. Appl. Opt., 11, 2489-2494(1972).

    [42] Q. Li, Z. X. Jia, Z. R. Li, Y. D. Yang, J. L. Xiao, S. W. Chen, G. S. Qin, Y. Z. Huang, W. P. Qin. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity. AIP Adv., 7, 075215(2017).

    [43] Y. L. Huang, Q. Li, J. Y. Han, Z. X. Jia, Y. S. Yu, Y. D. Yang, J. L. Xiao, J. L. Wu, D. M. Zhang, Y. Z. Huang, W. P. Qin, G. S. Qin. Temporal soliton and optical frequency comb generation in a Brillouin laser cavity. Optica, 6, 1491-1497(2019).

    [44] H. Z. Weng, J. Y. Han, Q. Li, Y. D. Yang, J. L. Xiao, G. S. Qin, Y. Z. Huang. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop. Appl. Phys. B, 124, 91(2018).

    [45] F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [46] H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, B. W. Liu. Dual-transverse-mode microsquare lasers with tunable wavelength interval. Opt. Lett., 40, 3548-3551(2015).

    [47] H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, Y. Du. Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers. IEEE J. Quantum Electron., 50, 981-989(2014).

    [48] J. Y. Han, Y. L. Huang, J. L. Wu, Z. R. Li, Y. D. Yang, J. L. Xiao, D. M. Zhang, G. S. Qin, Y. Z. Huang. 10-GHz broadband optical frequency comb generation at 1550/1310 nm. Opto-Electron. Adv., 3, 190033(2020).

    [49] M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett., 109, 223904(2012).

    [50] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [51] J. M. Dudley, S. Coen. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. Opt. Express, 12, 2423-2428(2004).

    Ting Wang, Ji-Liang Wu, Xu-Cheng Zhang, Yang Shi, Yue-De Yang, Jin-Long Xiao, Da-Ming Zhang, Guan-Shi Qin, Yong-Zhen Huang. Octave-spanning frequency comb generation based on a dual-mode microcavity laser[J]. Photonics Research, 2022, 10(9): 2107
    Download Citation