[1] A. Boes, L. Chang, C. Langrock, M. Yu, M. Zhang, Q. Lin, M. Lončar, M. Fejer, J. Bowers, A. Mitchell. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).
[2] V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Rev., 2, 040604(2015).
[3] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918(1962).
[4] D. S. Hum, M. M. Fejer. Quasi-phasematching. C. R. Phys., 8, 180(2006).
[5] A. Blázquez-Castro, A. García-Cabañes, M. Carrascosa. Biological applications of ferroelectric materials. Appl. Phys. Rev., 5, 041101(2018).
[6] L. Lv, F. Zhuge, F. Xie, X. Xujing, Z. Qingfu, Z. Nan, H. Yu, Z. Tianyou. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun., 10, 3331(2019).
[7] A. Haußmann, A. Gemeinhardt, M. Schröder, T. Kämpfe, L. M. Eng. Bottom-up assembly of molecular nanostructures by means of ferroelectric lithography. Langmuir, 33, 475(2017).
[8] S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, S. Dunn. Atomic polarization and local reactivity on ferroelectric surfaces: A new route toward complex nanostructures. Nano Lett., 2, 589(2002).
[9] S. Dunn, D. Tiwari. Influence of ferroelectricity on the photoelectric effect of LiNbO3. Appl. Phys. Lett., 93, 092905(2008).
[10] D. Li, D. A. Bonnell. Ferroelectric lithography. Ceram. Int., 34, 157(2008).
[11] S. Dunn, D. Tiwari, P. M. Jones, D. E. Gallardo. Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver. J. Mater. Chem., 17, 4460(2007).
[12] S. Dunn, S. Sharp, S. Burgess. The photochemical growth of silver nanoparticles on semiconductor surfaces — initial nucleation stage. Nanotechnology, 20, 115604(2009).
[13] J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, A. Gruverman. Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction. Nanotechnology, 17, 4946(2006).
[14] X. Liu, K. Kitamura, K. Terabe, H. Hatano, N. Ohashi. Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect. Appl. Phys. Lett., 91, 044101(2007).
[15] Y. Sun, R. J. Nemanich. Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence. J. Appl. Phys., 109, 104302(2011).
[16] Y. Sun, B. S. Eller, R. J. Nemanich. Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence. J. Appl. Phys., 110, 084303(2011).
[17] N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. L. Weber, K. Gallo, J. H. Rice, B. J. Rodriguez. Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals. ACS Nano, 6, 7373(2012).
[18] D. Tiwari, S. Dunn. Photochemical reduction of Al3+ to Al0 over a ferroelectric photocatalyst — LiNbO3. Mater. Lett., 79, 18(2012).
[19] X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, K. Kitamura. Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals. Appl. Phys. Lett., 99, 053102(2011).
[20] C. Ke, X. Wang, X. P. Hu, S. N. Zhu, N. Qi. Nanoparticle decoration of ferroelectric domain patterns in LiNbO3 crystal. J. Appl. Phys., 101, 064107(2007).
[21] S. Habicht, R. J. Nemanich, A. Gruverman. Physical adsorption on ferroelectric surfaces: Photoinduced and thermal effects. Nanotechnology, 19, 495303(2008).
[22] S. Grilli, P. Ferraro. Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals. Appl. Phys. Lett., 92, 232902(2008).
[23] P. Mokrý, M. Marvan, J. Fousek. Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films. J. Appl. Phys., 107, 094104(2010).
[24] Z. Zhang, P. Sharma, C. N. Borca, P. A. Dowben, A. Gruverman. Polarization-specific adsorption of organic molecules on ferroelectric LiNbO3 surfaces. Appl. Phys. Lett., 97, 243702(2010).
[25] A. V. Ievlev, A. N. Morozovska, V. Y. Shur, S. V. Kalinin. Ferroelectric switching by the grounded scanning probe microscopy tip. Phys. Rev. B, 91, 214109(2015).
[26] V. Y. Shur, M. S. Kosobokov, A. V. Makaev, D. K. Kuznetsov, M. S. Nebogatikov, D. S. Chezganov, E. A. Mingaliev. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater., 219, 117270(2021).
[27] X. Li, K. Terabe, H. Hatano, K. Kitamura. Nano-domain engineering in LiNbO3 by focused ion beam. J. Appl. Phys., 44, L1550(2005).
[28] K. Mizuuchi, K. Yamamoto. Domain inversion in LiTaO3 using an ion beam. Electron. Lett., 29, 2064(1993).
[29] X. Li, K. Terabe, H. Hatano, H. Zeng, K. Kitamura. Domain patterning thin crystalline ferroelectric film with focused ion beam for nonlinear photonic integrated circuits. J. Appl. Phys., 100, 106103(2006).
[30] D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, V. Y. Mikhailovskii. Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals. Appl. Phys. Lett., 110, 082903(2017).
[31] D. S. Chezganov, E. O. Vlasov, L. V. Gimadeeva, M. M. Neradovskiy, A. R. Akhmatkhanov, M. A. Chuvakova, D. O. Alikin, H. Tronche, F. Doutre, P. Baldi, V. Y. Shur. Short-period domain patterning by ion beam irradiation in lithium niobate waveguides produced by soft proton exchange. Opt. Laser Technol., 158, 108813(2023).
[32] V. Y. Shur, E. V. Pelegova, M. S. Kosobokov. Domain shapes in bulk uniaxial ferroelectrics. Ferroelectrics, 569, 251(2020).
[33] V. Y. Shur, J. W. P. Schmelzer. Nucleation Theory and Applications, 178-214(2005).
[34] I. S. Baturin, A. R. Akhmatkhanov, V. Y. Shur, M. S. Nebogatikov, M. A. Dolbilov, E. A. Rodina. Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics, 374, 1(2008).
[35] E. Pashnina, D. Chezganov, A. Slautina, A. Turygin, A. Ushakov, Q. Hu, X. Liu, X. Zhuo, X. Wei, V. Shur. Domain patterning in nonpolar cut PMN–PT by focused ion beam. J. Adv. Dielectr., 14, 2350024(2024).
[36] Y. Sheng, A. Best, H.-J. Butt, W. Krolikowski, A. Arie, K. Koynov. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express, 18, 16539(2010).
[37] M. Ayoub, P. Roedig, K. Koynov, J. Imbrock, C. Denz. Čerenkov-type second-harmonic spectroscopy in random nonlinear photonic structures. Opt. Express, 21, 8220(2013).
[38] A. A. Esin, A. R. Akhmatkhanov, V. Y. Shur. Superfast domain wall motion in lithium niobate single crystals. Analogy with crystal growth. Appl. Phys. Lett., 114, 192902(2019).
[39] V. A. Shikhova, A. S. Slautina, D. S. Chezganov, M. S. Nebogatikov, A. R. Akhmatkhanov, A. P. Turygin, L. I. Ivleva, V. Y. Shur. Formation of broad domain boundary during dot ion beam irradiation in SBN:Ni single crystals. Ferroelectrics, 592, 72(2022).
[40] L. S. Kokhanchik, E. V. Emelin, V. V. Sirotkin. Morphology features of ferroelectric submicron domains written by e-beam under a metal film in LiNbO3. Coatings, 12, 1881(2022).
[41] L. S. Kokhanchik, E. V. Emelin, V. V. Sirotkin. Large regular arrays with submicron domains written by low-voltage e-beam on –Z cut of lithium niobate. Opt. Mater., 128, 112405(2022).
[42] L. S. Kokhanchik, E. V. Emelin, V. V. Sirotkin, A. A. Svintsov. Deepening of domains at e-beam writing on the −Z surface of lithium niobate. J. Phys. D, Appl. Phys., 55, 195302(2022).
[43] L. S. Kokhanchik, E. V. Emelin, V. V. Sirotkin, A. A. Svintsov. Domain engineering in LiNbO3 crystals by e-beam and features of spatial distribution of electric field: Experiment and computer simulation. J. Appl. Phys., 128, 144101(2020).