[3] CAO W B, XIE X, WANG Y Q, et al. Effect of Pr6O11 doping on the microstructure and electrical properties of ZnO varistors[J]. Ceram Int, 2019, 45(18): 24777-24783.
[4] HEMBRAM K, RAO T N, SRINIVASA R S, et al. CaO doped ZnO-Bi2O3 varistors: Grain growth mechanism, structure and electrical properties[J]. Ceram Int, 2021, 47(1): 1229-1237.
[5] ZHANG L, LIU W F, GAO J H, et al. Effects of the Er2O3 doping on the microstructure and electrical properties of ZnO-Bi2O3 based varistor ceramics[J]. Ceram Int, 2021, 47(22): 32394-32356.
[6] WANG M Y, REN X, ZHOU Q B, et al. High improvement of degradation behavior of ZnO varistors under high current surges by appropriate Sb2O3 doping[J]. J Eur Ceram Soc, 2021, 41(1): 436-442.
[7] LIN W W, XU Z J, WANG Z H, et al. Influence of Bi3Zn2Sb3O14 pre-synthesis phase on electrical properties of the ZnO-Bi2O3 based varistor ceramics[J]. J Alloys Compd, 2020, 834(5): 155072.
[10] ZHAO X, LIAANG J J, SUN J J, et al. J Eur Ceram Soc, 2021, 41(1): 430-435.
[17] ASOKAN T, FREER R. Grain and grain boundary conduction in zinc oxide varistors before and after DC degradation[J]. J Eur Ceram Soc, 1993, 11(6): 545- 550.
[18] OISSON E, DUNLOP G L, OSTERLUND R. Interfacial microstructure of a ZnO varistor material[J]. Ultramicroscopy, 1988, 26(4): 421.