• Advanced Photonics Nexus
  • Vol. 3, Issue 3, 036008 (2024)
Qi Liu1, Fangmei Yu2, Hossein Chamkouri1, Yanguang Guo1..., Ping Chen1, Bo Wang3,*, Dongwei Liu4 and Lei Chen1,5,*|Show fewer author(s)
Author Affiliations
  • 1Hefei University of Technology, School of Materials Science and Engineering, Hefei, China
  • 2Chinese Academy of Sciences, Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Shenzhen, China
  • 3Wuyi University, School of Applied Physics and Materials, Wuyi, China
  • 4Second Affiliated Hospital of Anhui Medical University, Department of Ophthalmology, Hefei, China
  • 5Intelligent Manufacturing Institute of Hefei University of Technology, Hefei, China
  • show less
    DOI: 10.1117/1.APN.3.3.036008 Cite this Article Set citation alerts
    Qi Liu, Fangmei Yu, Hossein Chamkouri, Yanguang Guo, Ping Chen, Bo Wang, Dongwei Liu, Lei Chen, "Suppressing neuroinflammation using the near-infrared light emitted by (Sr,Ba)Ga12O19: Cr3+ phosphor," Adv. Photon. Nexus 3, 036008 (2024) Copy Citation Text show less
    References

    [1] Y. Hou et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 15, 565-581(2019).

    [2] W. Poewe et al. Multiple system atrophy. Nat. Rev. Dis. Primers, 8, 57(2022).

    [3] B. S. Connolly, A. E. Lang. Pharmacological treatment of Parkinson disease: a review. JAMA, 311, 1670-1683(2014).

    [4] Y. Park et al. Materials chemistry of neural interface technologies and recent advances in three-dimensional systems. Chem. Rev., 122, 5277-5316(2021).

    [5] Z. Ni, R. Chen. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl. Neurodegener., 4, 22(2015).

    [6] E. Check. Parkinson’s patients show positive response to implants. Nature, 416, 666(2002).

    [7] M. T. Heemels. Neurodegenerative diseases. Nature, 539, 179(2016).

    [8] E. Mass et al. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature, 549, 389-393(2017).

    [9] P. E. MgGuff, R. A. Deterling, L. S. Gottlieb. Tumoricidal effect of laser energy on experimental and human malignant tumors. N. Engl. J. Med., 273, 490-492(1965).

    [10] E. Mester et al. Untersuchungen über die hemmende bzw. fördernde Wirkung der Laserstrahlen. Langenbecks Archiv für klinische Chirurgie, 322, 1022-1027(1968).

    [11] V. Heiskanen, M. R. Hamblin. Photobiomodulation: lasers vs. light emitting diodes?. Photochem. Photobiol. Sci., 17, 1003-1017(2018).

    [12] L. F. de Freitas, M. R. Hamblin. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron., 22, 348-364(2016).

    [13] Y. Zhang et al. Blue LED-pumped intense short-wave infrared luminescence based on Cr3+-Yb3+-co-doped phosphors. Light Sci. Appl., 11, 136(2022). https://doi.org/10.1038/s41377-022-00816-6

    [14] S. H. Miao et al. Broadband short-wave infrared light-emitting diodes based on Cr3+-doped LiScGeO4 phosphor. ACS Appl. Mater., 13, 36011-36019(2021). https://doi.org/10.1021/acsami.1c10490

    [15] F. Salehpour et al. Brain photobiomodulation therapy: a narrative review. Mol. Neurobiol., 55, 6601-6636(2018).

    [16] C. L. Hamilton et al. Buckets:’ early observations on the use of red and infrared light helmets in Parkinson’s disease patients. Photomed. Laser Surg., 37, 615-622(2019).

    [17] D. M. Johnstone et al. Exploring the use of intracranial and extracranial (remote) photobiomodulation devices in Parkinson’s disease: a comparison of direct and indirect systemic stimulations. J. Alzheimer’s Dis., 83, 1399-1413(2021).

    [18] R. H. Michael, Y. Y. Huang. Photobiomodulation in the Brain: Low-Level Laser (Light)(2019).

    [19] D. Meder et al. The role of dopamine in the brain: lessons learned from Parkinson’s disease. NeuroImage, 190, 79-93(2019).

    [20] G. S. Bloom. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol., 71, 505-508(2014). https://doi.org/10.1001/jamaneurol.2013.5847

    [21] C. Gonzalez et al. Modeling amyloid beta and tau pathology in human cerebral organoids. Mol. Psychiatry, 23, 2363-2374(2018).

    [22] M. Cowan, W. A. Petri. Microglia: immune regulators of neurodevelopment. Front. Immunol., 9, 2576(2018).

    [23] T. C. Frank-Cannon et al. Does neuroinflammation fan the flame in neurodegenerative diseases?. Mol. Neurodegener., 4, 47(2009).

    [24] J. Chen et al. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway. J. Neuroimmunol., 305, 108-114(2017).

    [25] M. K. Jha, W. H. Lee, K. Suk. Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders. Biochem. Pharmacol., 103, 1-16(2016).

    [26] B. Malysa, A. Meijerink, T. Jüstel. Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La). J. Lumin., 202, 523-531(2018). https://doi.org/10.1016/j.jlumin.2018.05.076

    [27] J. Xu, J. Ueda, S. Tanabe. Toward tunable and bright deep-red persistent luminescence of Cr3+ in garnets. J. Am. Ceram. Soc., 100, 4033-4044(2017). https://doi.org/10.1111/jace.14942

    [28] M. G. Brik et al. Spectroscopy of YAl3(BO3)4: Cr3+ crystals following first principles and crystal field calculations. Philos. Mag., 90, 4569-4578(2010). https://doi.org/10.1080/14786435.2010.515265

    [29] H. Xiao et al. Cr3+ activated garnet phosphor with efficient blue to far-red conversion for pc-LED. Adv. Opt. Mater., 9, 2101134(2021). https://doi.org/10.1002/adom.202101134

    [30] H. Cai et al. Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nondestructive analysis. J. Mater. Chem. C, 9, 5469-5477(2021). https://doi.org/10.1039/D1TC00521A

    [31] L. Chen et al. A new red phosphor of the Mn activated non-stoichiometric strontium aluminate 3SrO·5Al2O3 for warm white light-emitting diodes. Funct. Mater. Lett., 6, 1350028(2013). https://doi.org/10.1142/S1793604713500288

    [32] L. Chen et al. A new green phosphor of SrAl2O4: Eu2+, Ce3+, Li+ for alternating current driven light-emitting diodes. Mater. Res. Bull., 47, 4071-4075(2012). https://doi.org/10.1016/j.materresbull.2012.08.057

    [33] S. Liu et al. Site engineering strategy toward enhanced luminescence thermostability of a Cr3+-doped broadband NIR phosphor and its application. Mater. Chem. Front., 5, 3841-3849(2021). https://doi.org/10.1039/D1QM00074H

    [34] H. X. Xiao et al. Paraquat mediates BV-2 microglia activation by raising intracellular ROS and inhibiting Akt1 phosphorylation. Toxicol. Lett., 355, 116-126(2022).

    [35] J. Melief et al. Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia, 60, 1506-1517(2012).

    [36] M. Ban et al. An active fraction from Spatholobus suberectus dunn inhibits the inflammatory response by regulating microglia activation, switching microglia polarization from M1 to M2 and suppressing the TLR4/MyD88/NF-κB pathway in LPS-stimulated BV2 cells. Heliyon, 9, e14979(2023). https://doi.org/10.1016/j.heliyon.2023.e14979

    [37] J. Li et al. Edaravone plays protective effects on LPS-induced microglia by switching M1/M2 phenotypes and regulating NLRP3 inflammasome activation. Front. Pharmacol., 12, 691773(2021).

    [38] Q. Cao et al. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling. PLoS One, 12, e0186764(2017).

    [39] N. Viceconte et al. Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism. J. Neuroinflammation, 12, 5(2015).

    [40] J. L. Wilson et al. Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus. Free Rad. Bio. Med., 104, 311-323(2017).

    [41] S. Song, F. Zhou, W. R. Chen. Low-level laser therapy regulates microglial function through Src-mediated signaling path ways: implications for neurodegenerative diseases. J. Neuroinflammation, 9, 219(2012).

    [42] Y. Z. Lu et al. Photobiomodulation with 670 nm light ameliorates Müller cell-mediated activation of microglia and macrophages in retinal degeneration. Exp. Eye Res., 165, 78-89(2017).

    [43] S. Saieva, G. Taglialatela. Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci. Rep., 12, 10848(2022).

    [44] R. O. Esenaliev et al. Nano-pulsed laser therapy is neuroprotective in a rat model of blast-induced neurotrauma. J. Neurotrauma, 35, 1510-1522(2018).

    [45] L. Yang et al. Non-invasive photobiomodulation treatment in an Alzheimer disease-like transgenic rat model. Theranostics, 12, 2205(2022).

    [46] J. W. Song et al. Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci. Rep., 7, 620(2017).

    [47] L. Tao et al. Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer’s disease mouse model. Light Sci. Appl., 10, 179(2021).

    [48] C. Chen et al. Exosomes derived from M2 microglial cells modulated by 1070-nm light improve cognition in an Alzheimer’s disease mouse model. Adv. Sci., 10, 2304025(2023).

    [49] S. Liu et al. Transcranial photobiomodulation improves insulin therapy in diabetic microglial reactivity and the brain drainage system. Commun. Biol., 6, 1239(2023).

    Qi Liu, Fangmei Yu, Hossein Chamkouri, Yanguang Guo, Ping Chen, Bo Wang, Dongwei Liu, Lei Chen, "Suppressing neuroinflammation using the near-infrared light emitted by (Sr,Ba)Ga12O19: Cr3+ phosphor," Adv. Photon. Nexus 3, 036008 (2024)
    Download Citation