• Chinese Journal of Lasers
  • Vol. 48, Issue 13, 1313001 (2021)
Changfeng Chen1、2, Yi Zheng1, and Chaolong Fang2、*
Author Affiliations
  • 1Continuing Education Center, Shangrao Normal College, Shangrao, Jiangxi 334000, China
  • 2Wenzhou Key Laboratory of Micro-Nano Optoelectronic Devices, College of Electrical and Electronic Engineering, Wengzhou University, Wenzhou, Zhejiang 325035, China
  • show less
    DOI: 10.3788/CJL202148.1313001 Cite this Article Set citation alerts
    Changfeng Chen, Yi Zheng, Chaolong Fang. Improvement of Luminescence Efficiency and Stability of CsPbBr3 Quantum Dot Films with Microlens Array Structure[J]. Chinese Journal of Lasers, 2021, 48(13): 1313001 Copy Citation Text show less
    References

    [1] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015). http://europepmc.org/articles/PMC4462997

    [2] Wei K, Zheng X, Cheng X G et al. Observation of ultrafast exciton-exciton annihilation in CsPbBr3 quantum dots[J]. Advanced Optical Materials, 4, 1993-1997(2016). http://onlinelibrary.wiley.com/doi/10.1002/adom.201600352

    [3] Ai B, Liu C, Wang J et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses[J]. Journal of the American Ceramic Society, 99, 2875-2877(2016). http://onlinelibrary.wiley.com/doi/10.1111/jace.14400/pdf

    [4] Li X M, Wu Y, Zhang S L et al. Quantum dots: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 26, 2435-2445(2016).

    [5] Li J H, Xu L M, Wang T et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control[J]. Advanced Materials, 29, 1603885(2017).

    [6] Wang H C, Lin S Y, Tang A C et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J]. Angewandte Chemie, 55, 7924-7929(2016).

    [7] Wang Y, Li X M, Song J Z et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 27, 7101-7108(2015). http://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201503573

    [8] Hu F R, Zhang H C, Sun C et al. Superior optical properties of perovskite nanocrystals as single photon emitters[J]. ACS Nano, 9, 12410-12416(2015). http://www.ncbi.nlm.nih.gov/pubmed/26522082

    [9] Mao J, Lin H, Ye F et al. All-perovskite emission architecture for white light-emitting diodes[J]. ACS Nano, 12, 10486-10492(2018). http://www.ncbi.nlm.nih.gov/pubmed/30222315

    [10] Song Y H, Yoo J S, Kang B K et al. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs[J]. Nanoscale, 8, 19523-19526(2016). http://www.ncbi.nlm.nih.gov/pubmed/27869253

    [11] Chen W W, Hao J Y, Hu W et al. Optoelectronics: enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure[J]. Small, 13, 1604085(2017). http://onlinelibrary.wiley.com/doi/10.1002/smll.201770114

    [12] Park D H, Han J S, Kim W et al. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut[J]. Dyes and Pigments, 149, 246-252(2018).

    [13] Wang Y W, Zhu Y H, Huang J F et al. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium[J]. The Journal of Physical Chemistry Letters, 7, 4253-4258(2016). http://pubs.acs.org/doi/10.1021/acs.jpclett.6b02045

    [14] Li Y, Lü Y, Guo Z Q et al. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes[J]. ACS Applied Materials & Interfaces, 10, 15888-15894(2018). http://europepmc.org/abstract/MED/29671575

    [15] Dong L B, Xu C J, Li Y et al. Flexible electrodes and supercapacitors for wearable energy storage: a review by category[J]. Journal of Materials Chemistry A, 4, 4659-4685(2016). http://pubs.rsc.org/en/content/articlelanding/2016/ta/c5ta10582j/unauth

    [16] Li X Y, Liang R R, Tao J et al. Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting[J]. ACS Nano, 11, 3883-3889(2017). http://europepmc.org/abstract/MED/28362480

    [17] Lee S Y, Park K I, Huh C et al. Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications[J]. Nano Energy, 1, 145-151(2012).

    [18] Eom S H, Wrzesniewski E, Xue J G. Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices[J]. Organic Electronics, 12, 472-476(2011). http://www.sciencedirect.com/science/article/pii/S1566119911000048

    [19] Go H, Koh T W, Jung H et al. Enhanced light-outcoupling in organic light-emitting diodes through a coated scattering layer based on porous polymer films[J]. Organic Electronics, 47, 117-125(2017). http://www.sciencedirect.com/science/article/pii/S1566119917302008

    [20] Dong T T, Fu Y G, Chen C et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 36, 0522004(2016).

    [21] Kim A, Huseynova G, Lee J et al. Enhancement of out-coupling efficiency of flexible organic light-emitting diodes fabricated on an MLA-patterned parylene substrate[J]. Organic Electronics, 71, 246-250(2019).

    [22] Leem Y C, Park J S, Kim J H et al. Light-emitting diodes with hierarchical and multifunctional surface structures for high light extraction and an antifouling effect[J]. Small, 12, 161-168(2016). http://dx.doi.org/10.1002/smll.201502354

    [23] Wang W, Zhou C H. New technology for fabrication of polymer microlens arrays[J]. Chinese Journal of Lasers, 36, 2869-2872(2009).

    [24] Zhang X Y, Tang Q L, Zhang Z et al. Concave refractive microlens arrays fabricated by ion beam etching[J]. Acta Optica Sinica, 21, 485-490(2001).

    [25] Liu X Y. Design of aspheric microlens made by photoresist reflow method[J]. Acta Optica Sinica, 39, 0208001(2019).

    Changfeng Chen, Yi Zheng, Chaolong Fang. Improvement of Luminescence Efficiency and Stability of CsPbBr3 Quantum Dot Films with Microlens Array Structure[J]. Chinese Journal of Lasers, 2021, 48(13): 1313001
    Download Citation