[1] GUO X Z, ZHANG Q L, DING X G, et al. Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: A review[J]. J Sol Gel Sci Technol, 2016, 79(2):328–358.
[2] HENCH L L, WEST J K. The sol–gel process[J]. Chem Rev, 1990,90(1): 33–72.
[3] SCHUBERT U, HUESING N, LORENZ A. Hybrid inorganic–organic materials by sol–gel processing of organofunctional metal alkoxides[J].Chem Mater, 1995, 7(11): 2010–2027.
[4] DANKS A E, HALL S R, SCHNEPP Z. The evolution of ‘sol–gel’chemistry as a technique for materials synthesis[J]. Mater Horiz, 2016,3(2): 91–112.
[5] PARASHAR M, SHUKLA V K, SINGH R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications[J]. J Mater Sci Mater Electron, 2020, 31(5): 3729–3749.
[6] BOKOV D, TURKI JALIL A, CHUPRADIT S, et al. Nanomaterial by sol–gel method: Synthesis and application[J]. Adv Mater Sci Eng, 2021,2021: 5102014.
[7] KISTLER S S. Coherent expanded-aerogels[J]. J Phys Chem, 1932,36(1): 52–64.
[8] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931,127: 741.
[9] ROY R. Gel route to homogeneous glass preparation[J]. J Am Ceram Soc, 1969, 52(6): 344.
[10] ST?BER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interface Sci, 1968,26(1): 62–69.
[11] DISLICH H. New routes to multicomponent oxide glasses[J]. Angew Chem Int Ed, 1971, 10(6): 363–370.
[12] WANG D H, BIERWAGEN G P. Sol–gel coatings on metals for corrosion protection[J]. Prog Org Coat, 2009, 64(4): 327–338.
[13] LEI Q, GUO J M, NOUREDDINE A, et al. Sol–gel-based advanced porous silica materials for biomedical applications[J]. Adv Funct Mater,2020, 30(41): 1909539.
[14] WU Y, WANG X D, SHEN J. Metal oxide aerogels for high-temperature applications[J]. J Sol Gel Sci Technol, 2023, 106(2):360–380.
[15] GUGLIELMI M. From past research experiences looking to the future of sol–gel[J]. J Sol Gel Sci Technol, 2020, 95(3): 494–502.
[16] YANG H, ZHU M K, LI Y. Sol-gel research in China: A brief history and recent research trends in synthesis of sol–gel derived materials and their applications[J]. J Solgel Sci Technol, 2023, 106(2): 406–421.
[17] DUBOIS G, KESSLER V, AEGERTER M A. Preface[J]. J Sol Gel Sci Technol, 2013, 65(1): 1.
[18] CHEN Q, ZHU L, ZHAO C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J]. Adv Mater, 2013, 25(30):4171–4176.
[19] LIU Z Y, CHANG J J, LIN Z H, et al. High-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%[J]. Adv Energy Mater, 2018, 8(19): 1703432.
[20] ZHANG J M, ZHAI S R, LI S, et al. Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process[J]. Chem Eng J, 2013, 215/216: 461–471.
[21] LI W, WANG F, FENG S S, et al. Sol–gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries[J]. J Am Chem Soc, 2013, 135(49): 18300–18303.
[22] YANG J P, WANG Y X, LI W, et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Adv Mater, 2017, 29(48): 1700523.
[23] ZHANG J S, ZHANG M W, LIN L H, et al. Sol processing of conjugated carbon nitride powders for thin-film fabrication[J]. Angew Chem Int Ed Engl, 2015, 54(21): 6297–6301.
[24] ZHU Z L, BAI Y, ZHANG T, et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells[J]. Angew Chem Int Ed Engl, 2014, 53(46):12571–12575.
[25] YU B, XING W Y, GUO W W, et al. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol–gel process[J]. J Mater Chem A, 2016, 4(19): 7330–7340.
[26] DU P, LUO L H, PARK H K, et al. Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters[J]. Chem Eng J, 2016, 306: 840–848.
[27] GHIMIRE P P, JARONIEC M. Renaissance of St?ber method for synthesis of colloidal particles: New developments and opportunities[J].J Colloid Interface Sci, 2021, 584: 838–865.
[28] MACWAN D P, DAVE P N, CHATURVEDI S. A review on nano-TiO2 sol–gel type syntheses and its applications[J]. J Mater Sci, 2011, 46(11):3669–3686.
[29] ARYA S, MAHAJAN P, MAHAJAN S, et al. Review—Influence of processing parameters to control morphology and optical properties of sol–gel synthesized ZnO nanoparticles[J]. ECS J Solid State Sci Technol, 2021, 10(2): 023002.
[30] CANO Z P, BANHAM D, YE S Y, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nat Energy, 2018, 3: 279–289.
[31] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat Energy, 2018, 3: 16–21.
[32] NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angew Chem Int Ed Engl, 2018, 57(1): 102–120.
[33] LI L P, ZHU J H, NIU Y L, et al. Efficient production of coaxial core–shell MnO@Carbon nanopipes for sustainable electrochemical energy storage applications[J]. ACS Sustain Chem Eng, 2017, 5(7):6288–6296.
[34] LI B, ZHENG M B, XUE H G, et al. High performance electrochemical capacitor materials focusing on nickel based materials[J]. Inorg Chem Front, 2016, 3(2): 175–202.
[35] LUO W, WANG Y X, CHOU S L, et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes[J]. Nano Energy, 2016, 27: 255–264.
[36] TAO X Y, LIU Y Y, LIU W, et al. Solid-state lithium–sulfur batteries operated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Lett, 2017, 17(5): 2967–2972.
[37] LUO W, WANG Y X, WANG L J, et al. Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage[J]. ACS Nano, 2016, 10(11): 10524–10532.
[38] GUO Q B, MA Y F, CHEN T T, et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries[J]. ACS Nano, 2017, 11(12):12658–12667.
[39] YU C L, ZHOU W Q, LIU H, et al. Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion[J]. Chem Eng J, 2016, 287: 117–129.
[40] CHEN Z W, JIANG H, JIN W L, et al. Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed{001} facets for Rhodamine B degradation[J]. Appl Catal B Environ,2016, 180: 698–706.
[41] ZHANG N, CHEN D, NIU F, et al. Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight[J]. Sci Rep, 2016, 6: 26467.
[42] SHENG Y Y, YANG J, WANG F, et al. Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity[J]. Appl Surf Sci, 2019, 465: 154–163.
[43] YANG Y X, KANG L, LI H. Enhancement of photocatalytic hydrogen production of BiFeO3 by Gd3+ doping[J]. Ceram Int, 2019, 45(6):8017–8022.
[44] LI C Q, SUN Z M, ZHANG W Z, et al. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus[J]. Appl Catal B Environ, 2018, 220:272–282.
[45] GU W H, CUI X Q, ZHENG J, et al. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation[J]. J Mater Sci Technol, 2021, 67: 265–272.
[46] LIU Q H, CAO Q, BI H, et al. CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Adv Mater, 2016, 28(3): 486–490.
[47] WANG F, GU W H, CHEN J B, et al. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption[J]. J Mater Sci Technol, 2022, 105: 92–100.
[48] HAN Y X, SHI X T, YANG X T, et al. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in situ fabricated hetero-structured SiC-BNNS fillers[J]. Compos Sci Technol, 2020, 187:107944.
[49] GUO X Z, WANG Z C, ZHU W J, et al. The novel and facile preparation of multilayer MoS2 crystals by a chelation-assisted sol–gel method and their electrochemical performance[J]. RSC Adv, 2017,7(15): 9009–9014.
[50] QIN W B, YUAN Z Y, SHEN Y B, et al. Phosphorus-doped porous perovskite LaFe1–xPxO3–δ nanosheets with rich surface oxygen vacancies for ppb level acetone sensing at low temperature[J]. Chem Eng J, 2022, 431: 134280.
[51] SIOUFFI A M. Silica gel-based monoliths prepared by the sol-gel method: Facts and figures[J]. J Chromatogr A, 2003, 1000(1/2):801–818.
[52] GURAV J L, JUNG I K, PARK H H, et al. Silica aerogel: Synthesis and applications[J]. J Nanomater, 2010, 2010: 409310.
[53] SOLEIMANI DORCHEH A, ABBASI M H. Silica aerogel; Synthesis,properties and characterization[J]. J Mater Process Technol, 2008,199(1–3): 10–26.
[54] KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality:A review[J]. Adv Colloid Interface Sci, 2020, 276: 102101.
[55] CHEN Y M, YANG Y, XIONG Y, et al. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding[J]. Nano Today, 2021, 38: 101204.
[56] FENG J Z, SU B L, XIA H S, et al. Printed aerogels: Chemistry,processing, and applications[J]. Chem Soc Rev, 2021, 50(6): 3842–3888.
[57] LI H J, HUANG H G, CHEN Y, et al. High-entropy alloy aerogels: A new platform for carbon dioxide reduction[J]. Adv Mater, 2023, 35(2):e2209242.
[58] LI Z C, KONG L, HUANG S Q, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith[J]. Angew Chem Int Ed Engl, 2017, 56(28):8134–8138.
[59] YANG X Y, CHEN L H, LI Y, et al. Hierarchically porous materials: Synthesis strategies and structure design[J]. Chem Soc Rev, 2017, 46(2):481–558.
[60] FENG D Y, YANG H, GUO X Z. 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries[J]. Chem Eng J, 2019, 355: 687–696.
[61] SHUAI L, GUO Z H, ZHANG P P, et al. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles[J]. Nano Energy, 2020, 78: 105389.
[62] ZHANG R H, SHI X T, TANG L, et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers[J]. Chin J Polym Sci,2020, 38(7): 730–739.
[63] WANG J, MA X Y, ZHOU J L, et al. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance[J]. ACS Nano, 2022, 16(4):6700–6711.
[64] LI L, LIU X L, WANG G, et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: A review[J]. Chem Eng J, 2021, 421:127744.
[65] SHENG Z Z, ZHANG X T. Mimicking polar bear hairs in aerogel fibers[J]. Science, 2023, 382(6677): 1358–1359.
[66] WU M R, SHAO Z Y, ZHAO N F, et al. Biomimetic, knittable aerogel fiber for thermal insulation textile[J]. Science, 2023, 382(6677):1379–1383.
[67] PANDEY S, MISHRA S B. Sol–gel derived organic–inorganic hybrid materials: Synthesis, characterizations and applications[J]. J Sol Gel Sci Technol, 2011, 59(1): 73–94.
[68] FIGUEIRA R B, SILVA C J R, PEREIRA E V. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: A review of recent progress[J]. J Coat Technol Res, 2015, 12(1): 1–35.
[69] SHCHUKIN D, M?HWALD H. A coat of many functions[J]. Science,2013, 341(6153): 1458–1459.
[70] CHEN Z H, SCHARNAGL N, ZHELUDKEVICH M L, et al.Micro/nanocontainer-based intelligent coatings: Synthesis, performance and applications–A review[J]. Chem Eng J, 2023, 451: 138582.
[71] ZEHRA S, MOBIN M, ASLAM R, et al. Nanocontainers: A comprehensive review on their application in the stimuli-responsive smart functional coatings[J]. Prog Org Coat, 2023, 176: 107389.
[72] CAO Y H, ZHENG D J, ZHANG F, et al. Layered double hydroxide(LDH) for multi-functionalized corrosion protection of metals: A review[J]. J Mater Sci Technol, 2022, 102: 232–263.
[73] PERIYASAMY A P, VENKATARAMAN M, KREMENAKOVA D,et al. Progress in sol–gel technology for the coatings of fabrics[J].Materials, 2020, 13(8): 1838.
[74] RAO W H, SHI J J, YU C B, et al. Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric[J]. Chem Eng J, 2021, 424: 130556.
[75] LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. J Colloid Interface Sci, 2019, 533: 198–206.
[76] ReportLinker. Global sol-gel coatings industry [EB/OL]. [2023-02-28]https://www.reportlinker.com/p05818157/Global-Sol-Gel-Coatings-Ind ustry.html?utm_source=GNW