• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 4, 872 (2023)
TANG Ying1,2, XIANG Huaicheng1,2, LI Jie1, and FANG Liang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    TANG Ying, XIANG Huaicheng, LI Jie, FANG Liang. Rattling Effect in A Site and Microwave Dielectric Properties of Ca3-xMgxYb2Ge3O12 (0≤x≤3) Garnets[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 872 Copy Citation Text show less
    References

    [2] HARROP P J. The temperature coefficient of capacitance[J]. J Phys D Appl Phys, 1968, 1(9): 1109-1115.

    [3] COLLA E L, REANEY I M, SETTER N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity[J]. J Appl Phys, 1993, 74(5): 3414-3424.

    [4] ZOU Z, CHEN Z, LAN X, et al. Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn1+xSi2O7+x ceramics[J]. J Eur Ceram Soc, 2017, 37(9): 3065-3071.

    [5] AO L, TANG Y, LI J, et al. Structure characterization and microwave dielectric properties of LiGa5O8 ceramic with low-εr and low loss[J]. J Eur Ceram Soc, 2020, 40(15): 5498-5503.

    [6] KAN A, OKAZAKI H, OGAWA H. Cation ordering and microwave dielectric properties of a LiGaTiO4 spinel by quenching[J]. Jpn J Appl Phys, 2019, 58(SL): SLLE01.

    [7] TANG Y, ZHANG Z, LI J, et al. A3Y2Ge3O12 (A=Ca, Mg): Two novel microwave dielectric ceramics with contrasting τf and Q×f[J]. J Eur Ceram Soc, 2020, 40(12): 3989-3995.

    [8] TANG Y, LI H, LI J, et al. Relationship between Rattling Mg2+ ions and anomalous microwave dielectric behavior in Ca3-xMg1+xLiV3O12 ceramics with garnet structure[J]. J Eur Ceram Soc, 2021, 41(15): 7697-7702.

    [9] LI FI, TANG Y, LI J, et al. Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9 (A=Ba, Sr) ceramics[J]. J Eur Ceram Soc, 2021, 41(7): 4153-4159.

    [10] DUNITZ J D, ORGEL L E. Stereochemistry of ionic solids[J]. Adv Inorg Chem Radiochem, 1960, 2(1): 1-60.

    [11] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr, 1976, 32(5): 751-763.

    [12] RIETVELD H M, A profile refinement method for nuclear and magnetic structures[J]. J Appl Crystallogr, 1969, 2(2): 65-71.

    [13] LEVY D, BARBIER J. Normal and inverse garnets: Ca3Fe2Ge3O12, Ca3Y2Ge3O12 and Mg3Y2Ge3O12[J]. Acta Crystallogr C, 1999, 55(10): 1611-1614.

    [14] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. J Appl Phys, 1993, 73(1): 348-317.

    [15] GUO D, ZHOU D, LI W, et al. Phase evolution, crystal structure, and microwave dielectric properties of water-insoluble (1-x)LaNbO4-xLaVO4 (0≤x≤0.9) ceramics[J]. Inorg Chem, 2017, 56(15): 9321-9329.

    [16] BRESE N E, O'KEEFFE M. Bond-valence parameters for solids[J]. Acta Crystallogr, 1991, 47(2): 192-197.

    [17] PARK H S, YOON K H, KIM E S. Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1-xCax)[Fe0.5(Nb1-yTay)0.5]O3[J]. J Am Ceram Soc, 2001, 84(1): 99-103.

    [18] YOON K H, KIM W S, KIM E S. Dependence of the octahedral bond valence on microwave dielectric properties of Ca1-xSm2x/3TiO3 ceramics[J]. Mater Sci Eng B, 2003, 99(1-3): 112-115.

    [19] LUFASO M W. Crystal Structures, modeling, and cielectric property relationships of 2:1 ordered Ba3MM'2O9 (M = Mg, Ni, Zn; M'=Nb, Ta) perovskites[J]. Chem Mater, 2004, 16(11): 2148-2156.

    [20] CHO Y S, YOON K H, LEE B D, et al. Understanding microwave dielectric properties of Pb-based complex perovskite ceramics via bond valence[J]. Ceram Int, 2004, 30(8): 2247-2250.

    [21] KIM E S, CHUN B S, FREER R. Effects of packing fraction and bond valence on microwave dielectric properties of ABO4 (A: Ca, Pb, Ba; B: Mo, W) ceramics[J]. J Eur Ceram Soc, 2010, 30(7): 1731-1736.

    [22] YANG Y, TANG Y, LI J, et al. Effects of ionic coordination bonding on microwave dielectric properties of Y2CaBGa4O12 (B= Zr, Sn) garnets[J]. ACS Appl Electron Mater, 2022, 4(7): 3512-3519.

    [23] YANG Y, ZHAI Y, XIANG H, et al. Rattling effects on microwave dielectric properties of Ca3TiBGe3O12 (B=Mg, Zn) garnets[J]. J Eur Ceram Soc, 2022, 42(11): 4566-4572.

    [24] WANG Z, FANG W, TANG Y, et al. The apparent difference in microwave dielectric properties of Ca3MZnGe3O12 (M=Zr, Sn) garnets originating from compression and rattling effects[J]. J Mater Sci Mater Electron, 2022, 33(26): 21101-21110.

    [25] QIU H, TANG Y, LI J, et al. Tuning of microwave dielectric properties of garnets Ca3Mg2CV2O12 (C=Si, Ti) through compression and expansion effects[J]. Ceram Int, 2023, 49(1): 565-570.

    [26] CHEN J, TANG Y, XIANG H, et al. Microwave dielectric properties and infrared reflectivity spectra analysis of two novel low-firing AgCa2B2V3O12 (B=Mg, Zn) ceramics with garnet structure[J]. J Eur Ceram Soc, 2018, 38(14): 4670-4676.

    [27] KOLESOV B A, GEIGEER C A. Raman spectra of silicate garnets[J]. Phys Chem Miner, 1998, 25(2): 142-151.

    TANG Ying, XIANG Huaicheng, LI Jie, FANG Liang. Rattling Effect in A Site and Microwave Dielectric Properties of Ca3-xMgxYb2Ge3O12 (0≤x≤3) Garnets[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 872
    Download Citation