• Photonics Research
  • Vol. 11, Issue 6, 1029 (2023)
Maki Maeda*, Jameesh Keloth, and Síle Nic Chormaic
Author Affiliations
  • Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
  • show less
    DOI: 10.1364/PRJ.486373 Cite this Article Set citation alerts
    Maki Maeda, Jameesh Keloth, Síle Nic Chormaic, "Manipulation of polarization topology using a Fabry–Pérot fiber cavity with a higher-order mode optical nanofiber," Photonics Res. 11, 1029 (2023) Copy Citation Text show less
    References

    [1] K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 592, 1-38(2015).

    [2] P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, S. L. Rolston. Optical nanofibers: a new platform for quantum optics. Adv. At. Mol. Opt. Phys., 66, 439(2017).

    [3] M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic. Higher order mode propagation in an optical nanofiber. Opt. Commun., 285, 4648-4654(2012).

    [4] C. Phelan, T. Hennessy, T. Busch. Shaping the evanescent field of optical nanofibers for cold atom trapping. Opt. Express, 21, 27093-27101(2013).

    [5] F. L. Kien, T. Busch, V. G. Truong, S. Nic Chormaic. Higher-order modes of vacuum-clad ultrathin optical fibers. Phys. Rev. A, 96, 023835(2017).

    [6] F. L. Kien, S. S. S. Hejazi, T. Busch, V. G. Truong, S. Nic Chormaic. Channeling of spontaneous emission from an atom into the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. Phys. Rev. A, 96, 043859(2017).

    [7] F. L. Kien, S. S. S. Hejazi, V. G. Truong, S. Nic Chormaic, T. Busch. Chiral force of guided light on an atom. Phys. Rev. A, 97, 063849(2018).

    [8] F. L. Kien, D. F. Kornovan, S. S. S. Hejazi, V. G. Truong, M. I. Petrov, S. Nic Chormaic, T. Busch. Force of light on a two-level atom near an ultrathin optical fiber. New J. Phys., 20, 093031(2018).

    [9] E. Stourm, M. Lepers, J. Robert, S. Nic Chormaic, K. Mølmer, E. Brion. Spontaneous emission and energy shifts of a Rydberg rubidium atom close to an optical nanofiber. Phys. Rev. A, 101, 052508(2020).

    [10] F. L. Kien, S. Nic Chormaic, T. Busch. Transfer of angular momentum of guided light to an atom with an electric quadrupole transition near an optical nanofiber. Phys. Rev. A, 106, 013712(2022).

    [11] J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, L. A. Orozco. Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation. Optica, 2, 416-423(2015).

    [12] F. K. Fatemi, J. E. Hoffman, P. Solano, E. F. Fenton, G. Beadie, S. L. Rolston, L. A. Orozco. Modal interference in optical nanofibers for sub-angstrom radius sensitivity. Optica, 4, 157-162(2017).

    [13] M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Alpeggiani, F. Nori. Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes. Optica, 5, 1016-1026(2018).

    [14] F. L. Kien, T. Busch. Torque of guided light on an atom near an optical nanofiber. Opt. Express, 27, 15046-15061(2019).

    [15] G. Sagué, A. Baade, A. Rauschenbeutel. Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres. New J. Phys., 10, 113008(2008).

    [16] M. Sadgrove, S. Wimberger, S. Nic Chormaic. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide. Sci. Rep., 6, 28905(2016).

    [17] A. Petcu-Colan, M. C. Frawley, S. Nic Chormaic. Tapered few-mode fibers: mode evolution during fabrication and adiabaticity. Int. J. Nonlinear Opt. Phys. Mater., 20, 293-307(2011).

    [18] J. M. Ward, A. Maimaiti, V. H. Le, S. Nic Chormaic. Contributed review: optical micro- and nanofiber pulling rig. Rev. Sci. Instrum., 85, 111501(2014).

    [19] A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, S. Nic Chormaic. Higher order microfibre modes for dielectric particle trapping and propulsion. Sci. Rep., 5, 9077(2015).

    [20] A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, S. Nic Chormaic. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes. Sci. Rep., 6, 30131(2016).

    [21] R. Kumar, V. Gokhroo, K. Deasy, A. Maimaiti, M. C. Frawley, C. Phelan, S. Nic Chormaic. Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre. New J. Phys., 17, 013026(2015).

    [22] F. L. Kien, K. Hakuta. Cavity-enhanced channeling of emission from an atom into a nanofiber. Phys. Rev. A, 80, 053826(2009).

    [23] K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, K. Hakuta. Nanofiber quantum photonics. J. Opt., 20, 073001(2018).

    [24] P. Romagnoli, M. Maeda, J. M. Ward, V. G. Truong, S. Nic Chormaic. Fabrication of optical nanofibre-based cavities using focussed ion-beam milling: a review. Appl. Phys. B, 126, 111(2020).

    [25] J. Keloth, K. P. Nayak, K. Hakuta. Fabrication of a centimeter-long cavity on a nanofiber for cavity QED. Opt. Lett., 42, 1003-1006(2017).

    [26] W. Li, J. Du, V. G. Truong, S. Nic Chormaic. Optical nanofiber-based cavity induced by periodic air-nanohole arrays. Appl. Phys. Lett., 110, 253102(2017).

    [27] W. Li, J. Du, S. Nic Chormaic. Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters. Opt. Lett., 43, 1674-1677(2018).

    [28] T. Tashima, H. Takashima, S. Takeuchi. Direct optical excitation of an NV center via a nanofiber Bragg-cavity: a theoretical simulation. Opt. Express, 27, 27009-27016(2019).

    [29] S. K. Ruddell, K. E. Webb, M. Takahata, S. Kato, T. Aoki. Ultra-low-loss nanofiber Fabry–Pérot cavities optimized for cavity quantum electrodynamics. Opt. Lett., 45, 4875-4878(2020).

    [30] Z. Li, X. Li, X. Zhong. Strong photon blockade in an all-fiber emitter-cavity quantum electrodynamics system. Phys. Rev. A, 103, 043724(2021).

    [31] R. Yalla, M. Sadgrove, K. P. Nayak, K. Hakuta. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. Phys. Rev. Lett., 113, 143601(2014).

    [32] D. H. White, S. Kato, N. Német, S. Parkins, T. Aoki. Cavity dark mode of distant coupled atom-cavity systems. Phys. Rev. Lett., 122, 253603(2019).

    [33] T. Tashima, H. Takashima, A. W. Schell, T. T. Tran, I. Aharonovich, S. Takeuchi. Hybrid device of hexagonal boron nitride nanoflakes with defect centres and a nano-fibre Bragg cavity. Sci. Rep., 12, 96(2022).

    [34] S. Kato, T. Aoki. Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett., 115, 093603(2015).

    [35] S. K. Ruddell, K. E. Webb, I. Herrera, A. S. Parkins, M. D. Hoogerland. Collective strong coupling of cold atoms to an all-fiber ring cavity. Optica, 4, 576-579(2017).

    [36] A. Johnson, M. Blaha, A. E. Ulanov, A. Rauschenbeutel, P. Schneeweiss, J. Volz. Observation of collective superstrong coupling of cold atoms to a 30-m long optical resonator. Phys. Rev. Lett., 123, 243602(2019).

    [37] T. Salzburger, P. Domokos, H. Ritsch. Enhanced atom capturing in a high-Q cavity by help of several transverse modes. Opt. Express, 10, 1204-1214(2002).

    [38] A. Wickenbrock, M. Hemmerling, G. R. M. Robb, C. Emary, F. Renzoni. Collective strong coupling in multimode cavity QED. Phys. Rev. A, 87, 043817(2013).

    [39] D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, J. Zhao. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers. Opt. Lett., 43, 1590-1593(2018).

    [40] A. Jöckel. Glasfaser-basierte Fabry-Pérot-resonatoren mit integrierten ultradünnen passagen(2009).

    [41] Q. Wang, C.-H. Tu, Y.-N. Li, H.-T. Wang. Polarization singularities: progress, fundamental physics, and prospects. APL Photon., 6, 040901(2021).

    [42] I. Freund. Polarization singularity indices in Gaussian laser beams. Opt. Commun., 201, 251-270(2002).

    [43] G. Arora, P. Senthilkumaran. Generation of Stokes singularities using polarization lateral shear interferometer. Opt. Express, 30, 27583-27592(2022).

    [44] I. Freund. Poincaré vortices. Opt. Lett., 26, 1996-1998(2001).

    [45] I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, I. I. Mokhun. Stokes singularity relations. Opt. Lett., 27, 545-547(2002).

    [46] G. Arora, , P. Senthilkumaran. Full Poincaré beam with all the Stokes vortices. Opt. Lett., 44, 5638-5641(2019).

    [47] F. Flossmann, U. T. Schwarz, M. Maier, M. R. Dennis. Polarization singularities from unfolding an optical vortex through a birefringent crystal. Phys. Rev. Lett., 95, 253901(2005).

    [48] F. Flossmann, U. T. Schwarz, M. Maier, M. R. Dennis. Stokes parameters in the unfolding of an optical vortex through a birefringent crystal. Opt. Express, 14, 11402-11411(2006).

    [49] K. Y. Bliokh, A. Niv, V. Kleiner, E. Hasman. Singular polarimetry: evolution of polarization singularities in electromagnetic waves propagating in weakly anisotropic medium. Opt. Express, 16, 695-709(2008).

    [50] S. K. Pal, , P. Senthilkumaran. Polarization singularity index sign inversion by a half-wave plate. Appl. Opt., 56, 6181-6190(2017).

    [51] D. Pohl. Operation of a ruby laser in the purely transverse electric mode TE01. Appl. Phys. Lett., 20, 266-267(1971).

    [52] K. Yonezawa, Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt. Lett., 31, 2151-2153(2006).

    [53] Y. Jiang, G. Ren, Y. Shen, Y. Xu, W. Jin, Y. Wu, W. Jian, S. Jian. Two-dimensional tunable orbital angular momentum generation using a vortex fiber. Opt. Lett., 42, 5014-5017(2017).

    [54] Y. V. Jayasurya, V. V. G. K. Inavalli, N. K. Viswanathan. Polarization singularities in the two-mode optical fiber output. Appl. Opt., 50, E131-E137(2011).

    [55] C. H. Krishna, S. Roy. Polarization singular patterns in modal fields of few-mode optical fiber. J. Opt. Soc. Am. B, 37, 2688-2695(2020).

    [56] F. L. Kien, K. Nayak, K. Hakuta. Nanofibers with Bragg gratings from equidistant holes. J. Mod. Opt., 59, 274-286(2012).

    [57] J. Keloth, K. P. Nayak, J. Wang, M. Morinaga, K. Hakuta. Coherent interaction of orthogonal polarization modes in a photonic crystal nanofiber cavity. Opt. Express, 27, 1453-1466(2019).

    [58] E. Otte, C. Alpmann, C. Denz. Polarization singularity explosions in tailored light fields. Laser Photon. Rev., 12, 1700200(2018).

    [59] J. P. Gordon, H. Kogelnik. PMD fundamentals: polarization mode dispersion in optical fibers. Proc. Natl. Acad. Sci. USA, 97, 4541-4550(2000).

    [60] K. Kolluru, S. Saha, S. D. Gupta. Cavity enhanced interference of orthogonal modes in a birefringent medium. Opt. Commun., 410, 836-840(2018).

    [61] S. Vyas, Y. Kozawa, S. Sato. Polarization singularities in superposition of vector beams. Opt. Express, 21, 8972-8986(2013).

    [62] F. Lei, G. Tkachenko, J. M. Ward, S. Nic Chormaic. Complete polarization control for a nanofiber waveguide using directional coupling. Phys. Rev. Appl., 11, 064041(2019).

    [63] T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, G. Leuchs. Observation of optical polarization Möbius strips. Science, 347, 964-966(2015).

    [64] T. Bauer, M. Neugebauer, G. Leuchs, P. Banzer. Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett., 117, 013601(2016).

    [65] T. Bauer, P. Banzer, F. Bouchard, S. Orlov, L. Marrucci, E. Santamato, R. W. Boyd, E. Karimi, G. Leuchs. Multi-twist polarization ribbon topologies in highly-confined optical fields. New J. Phys., 21, 053020(2019).

    [66] G. Arora, S. Joshi, H. Singh, V. Haridas, P. Senthilkumaran. Perturbation of V-point polarization singular vector beams. Opt. Laser Technol., 158, 108842(2023).

    Maki Maeda, Jameesh Keloth, Síle Nic Chormaic, "Manipulation of polarization topology using a Fabry–Pérot fiber cavity with a higher-order mode optical nanofiber," Photonics Res. 11, 1029 (2023)
    Download Citation