• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 9, 2362 (2023)
YAN Xingru*, LIU Wenjing, LI Xiaodong, and HUANG Changshui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    YAN Xingru, LIU Wenjing, LI Xiaodong, HUANG Changshui. Synthesis and Application of Graphdiyne-Based Oxygen Reduction Catalysts[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2362 Copy Citation Text show less
    References

    [1] DUAN J, CHEN S, VASILEFF A, et al. Anion and cation modulation in metal compounds for bifunctional overall water splitting[J]. ACS Nano, 2016, 10: 8738-8745.

    [2] MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem Soc Rev, 2014, 43(18): 6555-6569.

    [3] TENG H T, WANG W T, HAN X F, et al. Recent development and perspectives of flexible zinc-air batteries[J]. Acta Phys Chim Sin, 2021: 2107017-.

    [4] DING L, TANG T, HU J S. Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts[J]. Acta Phys Chim Sin, 2020, 37(9): 2010048.

    [5] ZHANG J, ZHANG J J, HE F, et al. Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst[J]. Nano-Micro Lett, 2021, 13(1): 65.

    [6] RAO P, WU D X, WANG T J, et al. Single atomic cobalt catalyst for efficient oxygen reduction reaction[J]. eScience, 2022, 2: 399-404.

    [7] YANG H, LIU Y F, LIU X L, et al. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis[J].eScience, 2022, 2: 227-234.

    [8] LI G X, LI Y L, LIU H B, et al. Architecture of graphdiyne nanoscale films[J]. Chem Commun, 2010, 46(19): 3256-3258.

    [9] HUANG C S, LI Y J, WANG N, et al. Progress in research into 2D graphdiyne-based materials[J]. Chem Rev, 2018, 118(16): 7744-7803.

    [10] GAO L, YANG Z, LI X D, et al. Post-modified strategies of graphdiyne for electrochemical applications[J]. Chem - Asian J, 2021, 16(16): 2185-2194.

    [11] YANG Z, ZHANG D Y, WANG K, et al. Investigating graphdiyne based materials for rechargeable batteries[J]. Nano Today, 2022, 46: 101588.

    [12] LI J S, ZHAO M, ZHAO C J, et al. Graphdiyne-doped P3CT-K as an efficient hole-transport layer for MAPbI3 perovskite solar cells[J]. ACS Appl Mater Interfaces, 2019, 11(3): 2626-2631.

    [13] PARK M, LEE H. Carbyne bundles for a lithium-ion-battery anode[J]. J Korean Phys Soc, 2013, 63(5): 1014-1018.

    [14] WINTER M, BESENHARD J O, SPAHR M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Adv Mater, 1998, 10(10): 725-763.

    [15] HUANG C S, ZHANG S L, LIU H B, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11: 481-489.

    [16] LU T T, HE J J, LI R, et al. Adjusting the interface structure of graphdiyne by H and F co-doping for enhanced capacity and stability in Li-ion battery[J]. Energy Storage Mater, 2020, 29: 131-139.

    [17] HE J J, WANG N, CUI Z L, et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries[J]. Nat Commun, 2017, 8(1): 1172.

    [18] LI X, LI X, SUN Q, et al. Synthesis and applications of graphdiyne derivatives[J]. Acta Phys Chim Sin, 2023, 39: 2206029.

    [19] WANG N, LI X D, TU Z Y, et al. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage[J]. Angewandte Chem, 2018, 130(15): 4032-4037.

    [20] SHEN X Y, LI X D, ZHAO F H, et al. Preparation & structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application[J]. 2D Mater, 2019, 6(3):6.

    [21] HE J J, ZHANG C J, DU H P, et al. Engineering vertical aligned MoS2 on graphene sheet towards thin film lithium ion battery[J]. Electrochim Acta, 2015, 178: 476-483.

    [22] LI B S, LAI C, ZHANG M M, et al. Graphdiyne: A rising star of electrocatalyst support for energy conversion[J]. Adv Energy Mater, 2020, 10(16): 2000177.

    [23] WANG Z Q, QI L, ZHENG Z Q, et al. 2D graphdiyne: a rising star on the horizon of energy conversion[J]. Chem - Asian J, 2021, 16(21): 3259-3271.

    [24] CHEN X Y, JIANG X, YANG N J. Graphdiyne electrochemistry: progress and perspectives[J]. Small, 2022, 18(24): 2201135.

    [25] XUE Y R, HUANG B L, YI Y P, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nat Commun, 2018, 9(1): 1460.

    [26] HUI L, XUE Y R, YU H D, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. J Am Chem Soc, 2019, 141(27): 10677-10683.

    [27] GAO Y, XUE Y R, QI L, et al. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water[J]. Nat Commun, 2022, 13(1): 5227.

    [28] WANG Z Q, ZHENG Z Q, XUE Y R, et al. Acidic water oxidation on quantum dots of IrOx/graphdiyne[J]. Adv Energy Mater, 2021, 11(32): 2101138.

    [29] LI J, GAO X, LIU B, et al. Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production[J]. J Am Chem Soc, 2016, 138(12): 3954-3957.

    [30] LV Q, WANG N, SI W Y, et al. Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries[J]. Appl Catal B Environ, 2020, 261: 118234.

    [31] LV Q, SI W Y, HE J J, et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction[J]. Nat Commun, 2018, 9(1): 3376.

    [32] ZHAO Y S, WAN J W, YAO H Y, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nat Chem, 2018, 10(9): 924-931.

    [33] SI W Y, YANG Z, HU X L, et al. Preparation of zero valence Pd nanoparticles with ultra-efficient electrocatalytic activity for ORR[J]. J Mater Chem A, 2021, 9(25): 14507-14514.

    [34] LI M P, LV Q, SI W Y, et al. Sp-hybridized nitrogen as new anchoring sites of iron single atoms to boost the oxygen reduction reaction[J]. Angew Chem Int Ed, 2022, 61(38): e202208238.

    [35] CHEN Z, XUE Y, LI Y. Synthesis and applications of graphdiyne based zerovalent atomic catalysts[J]. Chem. J. Chin Univ, 2022, 43, 20220063.

    [36] BU H X, ZHAO M W, ZHANG H Y, et al. Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification[J]. J Phys Chem A, 2012, 116(15): 3934-3939.

    [37] PSOFOGIANNAKIS G M, FROUDAKIS G E. Computational prediction of new hydrocarbon materials: the hydrogenated forms of graphdiyne[J]. J Phys Chem C, 2012, 116(36): 19211-19214.

    [38] PEI Y. Mechanical properties of graphdiyne sheet[J]. Phys B Condens Matter, 2012, 407(22): 4436-4439.

    [39] IVANOVSKII A L. Graphynes and graphdyines[J]. Prog Solid State Chem, 2013, 41(1-2): 1-19.

    [40] ZHANG S Q, WANG J Y, LI Z Z, et al. Raman spectra and corresponding strain effects in graphyne and graphdiyne[J]. J Phys Chem C, 2016, 120(19): 10605-10613.

    [41] LONG M Q, TANG L, WANG D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions[J]. ACS Nano, 2011, 5(4): 2593-2600.

    [42] NARITA N, NAGAI S, SUZUKI S, et al. Electronic structure of three-dimensional graphyne[J]. Phys Rev B, 2000, 62(16): 11146-11151.

    [43] LIN L H, PAN H Z, CHEN Y H, et al. Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine[J]. Carbon, 2019, 143: 8-13.

    [44] BEHZAD S. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne[J]. Phys E Low Dimens Syst Nanostr, 2016, 83: 211-214.

    [45] ZHENG Q Y, LUO G F, LIU Q H, et al. Structural and electronic properties of bilayer and trilayer graphdiyne[J]. Nanoscale, 2012, 4(13): 3990-3996.

    [46] GAO X, ZHU Y H, YI D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy[J]. Sci Adv, 2018, 4(7): eaat6378.

    [47] NARITA N, NAGAI S, SUZUKI S, et al. Optimized geometries and electronic structures of graphyne and its family[J]. Phys Rev B, 1998, 58(16): 11009-11014.

    [48] LUO G F, ZHENG Q Y, MEI W N, et al. Structural, electronic, and optical properties of bulk graphdiyne[J]. J Phys Chem C, 2013, 117(25): 13072-13079.

    [49] ZHANG M J, WANG X X, SUN H J, et al. Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen[J]. Sci Rep, 2017, 7(1): 11535.

    [50] QIN X M, LIU Y, CHI B Q, et al. Origins of Dirac cones and parity dependent electronic structures of α-graphyne derivatives and silagraphynes[J]. Nanoscale, 2016, 8(33): 15223-15232.

    [51] JIAO Y, DU A J, HANKEL M, et al. Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification[J]. Chem Commun, 2011, 47(43): 11843-11845.

    [52] ZHANG Y Y, PEI Q X, WANG C M. Mechanical properties of graphynes under tension: a molecular dynamics study[J]. Appl Phys Lett, 2012, 101(8): 081909.

    [53] XIE C P, HU X L, GUAN Z Y, et al. Tuning the properties of graphdiyne by introducing electron-withdrawing/donating groups[J]. Angew Chem Int Ed, 2020, 59(32): 13542-13546.

    [54] CUI M, HU T T, CHEN L L, et al. Recent progress in graphdiyne for electrocatalytic reactions[J]. ChemElectroChem, 2020, 7(24): 4843-4852.

    [55] BAI L, ZHENG Z Q, WANG Z Q, et al. Acetylenic bond-driven efficient hydrogen production of a graphdiyne based catalyst[J]. Mater Chem Front, 2021, 5(5): 2247-2254.

    [56] LIU B K, XU L K, ZHAO Y S, et al. Heteroatoms in graphdiyne for catalytic and energy-related applications[J]. J Mater Chem A, 2021, 9(35): 19298-19316.

    [57] MOHAJERI A, SHAHSAVAR A. Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups[J]. J Mater Sci, 2017, 52: 5366-5379.

    [58] MOHAJERI A, SHAHSAVAR A. Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups[J]. J Mater Sci, 2017, 52: 5366-5379.

    [59] LIU Y X, XUE Y R, HUI L, et al. Porous graphdiyne loading CoOx quantum dots for fixation nitrogen reaction[J]. Nano Energy, 2021, 89: 106333.

    [60] GUO S Y, YAN H L, WU F, et al. Graphdiyne as electrode material: tuning electronic state and surface chemistry for improved electrode reactivity[J]. Anal Chem, 2017, 89(23): 13008-13015.

    [61] SUN C H, SEARLES D J. Lithium storage on graphdiyne predicted by DFT calculations[J]. J Phys Chem C, 2012, 116(50): 26222-26226.

    [62] HAO X J, HU F X, GU Y, et al. Molecularly assembled graphdiyne with atomic sites for ultrafast and real-time detection of nitric oxide in cell assays[J]. Biosens Bioelectron, 2022, 195: 113630.

    [63] SHANG H, ZUO Z C, ZHENG H Y, et al. N-doped graphdiyne for high-performance electrochemical electrodes[J]. Nano Energy, 2018, 44: 144-154.

    [64] GAO X, LI J, DU R, et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell[J]. Adv Mater, 2017, 29(9): 1605308.

    [65] XUE Y R, GUO Y, YI Y P, et al. Self-catalyzed growth of Cu@graphdiyne core-shell nanowires array for high efficient hydrogen evolution cathode[J]. Nano Energy, 2016, 30: 858-866.

    [66] FANG Y, XUE Y R, HUI L, et al. In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting[J].Nano Energy, 2019, 59: 591-597.

    [67] ZUO Z C, SHANG H, CHEN Y H, et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode[J]. Chem Commun, 2017, 53(57): 8074-8077.

    [68] MIN H, QI Y Q, CHEN Y H, et al. Synthesis and imaging of biocompatible graphdiyne quantum dots[J]. ACS Appl Mater Interfaces, 2019, 11(36): 32798-32807.

    [69] XIE J N, WANG N, DONG X H, et al. Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection[J]. ACS Appl Mater Interfaces, 2019, 11(3): 2579-2590.

    [70] LI G, LI Y, QIAN X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. J Phys Chem C, 2011, 115: 2611-2615.

    [71] LIU R, GAO X, ZHOU J Y, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Adv Mater, 2017, 29(18)1604665.

    [72] MATSUOKA R, SAKAMOTO R, HOSHIKO K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. J Am Chem Soc, 2017, 139(8): 3145-3152.

    [73] WU L M, DONG Y Z, ZHAO J L, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Adv Mater, 2019, 31(14): e1807981.

    [74] YIN C, LI J Q, LI T R, et al. Catalyst-free synthesis of few-layer graphdiyne using a microwave-induced temperature gradient at a solid/liquid interface[J]. Adv Funct Mater, 2020, 30(23): 2001396.

    [75] MATSUOKA R, TOYODA R, SHIOTSUKI R, et al. Expansion of the graphdiyne family: a triphenylene-cored analogue[J]. ACS Appl Mater Interfaces, 2019, 11(3): 2730-2733.

    [76] ZHOU J Y, GAO X, LIU R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. J Am Chem Soc, 2015, 137(24): 7596-7599.

    [77] ZHAO F H, WANG N, ZHANG M J, et al. In situ growth of graphdiyne on arbitrary substrates with a controlled-release method[J]. Chem Commun, 2018, 54(47): 6004-6007.

    [78] ZHAO F H, LI X D, HE J J, et al. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries[J]. Chem Eng J, 2021, 413: 127486.

    [80] LV Q, SI W Y, YANG Z, et al. Nitrogen-doped porous graphdiyne: a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS Appl Mater Interfaces, 2017, 9(35): 29744-29752.

    [81] ZHANG S L, DU H P, HE J J, et al. Nitrogen-doped graphdiyne applied for lithium-ion storage[J]. ACS Appl Mater Interfaces, 2016, 8(13): 8467-8473.

    [82] JIANG T, CHEN K, WANG J J, et al. Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes[J]. J Mater Chem A, 2019, 7(48): 27535-27546.

    [83] ZOU H Y, RONG W F, LONG B H, et al. Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions[J]. ACS Catal, 2019, 9(12): 10649-10655.

    [84] ZHANG M J, SUN H J, WANG X X, et al. Room-temperature ferromagnetism in sulfur-doped graphdiyne semiconductors[J]. J Phys Chem C, 2019, 123(8): 5010-5016.

    [85] ZHAO Y S, YANG N L, YAO H Y, et al. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction[J]. J Am Chem Soc, 2019, 141(18): 7240-7244.

    [86] YANG Z, CUI W W, WANG K, et al. Chemical modification of the sp-hybridized carbon atoms of graphdiyne by using organic sulfur[J]. Chemistry, 2019, 25(22): 5643-5647.

    [87] ZHAO Z H, XIA Z H. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions[J]. ACS Catal, 2016, 6(3): 1553-1558.

    [88] LIU R J, LIU H B, LI Y L, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6(19): 11336-11343.

    [89] LU T T, HU X L, HE J J, et al. Aqueous/solid state Zn-air batteries based on N doped graphdiyne as efficient metal-free bifunctional catalyst[J]. Nano Energy, 2021, 85: 106024.

    [90] DU H P, ZHANG Z H, HE J J, et al. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries[J]. Small, 2017, 13(44): 1702277.

    [91] WANG N, HE J J, TU Z Y, et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage[J]. Angewandte Chem Int Ed, 2017, 56(36): 10740-10745.

    [92] HE J J, WANG N, YANG Z, et al. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance[J]. Energy Environ Sci, 2018, 11(10): 2893-2903.

    [93] REN X, LI X D, YANG Z, et al. Tailoring acetylenic bonds in graphdiyne for advanced lithium storage[J]. ACS Sustainable Chem Eng, 2020, 8(7): 2614-2621.

    [94] DAI L M, XUE Y H, QU L T, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chem Rev, 2015, 115(11): 4823-4892.

    [95] YU H D, XUE Y R, HUI L, et al. Graphdiyne-based metal atomic catalysts for synthesizing ammonia[J]. Natl Sci Rev, 2020, 8(8): nwaa213.

    [96] ZHENG Z Q, WANG Z Q, XUE Y R, et al. Selective conversion of CO2 into cyclic carbonate on atom level catalysts[J]. ACS Mater Au, 2021, 1(2): 107-115.

    [97] ZOU H Y, RONG W F, WEI S T, et al. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser[J]. Proc Natl Acad Sci USA, 2020, 117(47): 29462-29468.

    [98] HE T W, MATTA S K, DU A J. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions[J]. Phys Chem Chem Phys, 2019, 21(3): 1546-1551.

    [99] WANG X, YANG Z, SI W Y, et al. Cobalt-nitrogen-doped graphdiyne as an efficient bifunctional catalyst for oxygen reduction and hydrogen evolution reactions[J]. Carbon, 2019, 147: 9-18.

    [100] DU Y C, XUE Y R, ZHANG C, et al. Photoinduced electrocatalysis on 3D flexible OsOx quantum dots[J]. Adv Energy Mater, 2021, 11(18): 2100234.

    [101] LIN Y D, KANG H F, LIANG M X, et al. Hybrid nanostructured MnO2 nanowire/graphdiyne with enhanced lithium-ion performance promoting by interfacial storage[J]. Appl Surf Sci, 2020, 526: 146457.

    [102] YU H D, XUE Y R, HUI L, et al. Graphdiyne-engineered heterostructures for efficient overall water-splitting[J]. Nano Energy, 2019, 64: 103928.

    [103] YU H D, XUE Y R, HUI L, et al. Efficient hydrogen production on a 3D flexible heterojunction material[J]. Adv Mater, 2018, 30(21): 1707082.

    [104] FANG Y, XUE Y R, LI Y J, et al. Graphdiyne interface engineering: highly active and selective ammonia synthesis[J]. Angew Chem Int Ed, 2020, 59(31): 13021-13027.

    [105] QI H T, YU P, WANG Y X, et al. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity[J]. J Am Chem Soc, 2015, 137(16): 5260-5263.

    [106] ZHANG S S, CAI Y J, HE H Y, et al. Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium[J]. J Mater Chem A, 2016, 4(13): 4738-4744.

    [107] SI W Y, YANG Z, WANG X, et al. Fe, N-codoped graphdiyne displaying efficient oxygen reduction reaction activity[J]. ChemSusChem, 2019, 12(1): 173-178.

    [108] WANG W, YAO F T, ZENG M, et al. Sp-nitrogen and γ-ray modulating multiply γ-graphyne for anchoring Pt nanoparticles to boost oxygen reduction activity and stability[J]. Appl Mater Today, 2022, 29: 101626.

    [109] YIN X P, TANG S F, ZHANG C, et al. Graphdiyne-based Pd single-atom catalyst for semihydrogenation of alkynes to alkenes with high selectivity and conversion under mild conditions[J]. J Mater Chem A, 2020, 8(40): 20925-20930.

    [110] BARTOLOMEI M, CARMONA-NOVILLO E, GIORGI G. First principles investigation of hydrogen physical adsorption on graphynes' layers[J]. Carbon, 2015, 95: 1076-1081.

    [111] GU J X, MAGAGULA S, ZHAO J X, et al. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping[J]. Small Methods, 2019, 3(9): 1800550.

    [112] CHEN X. Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms[J]. Phys Chem Chem Phys, 2015, 17(43): 29340-29343.

    [113] CHEN X Z, ONG W J, KONG Z Z, et al. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions[J]. Sci Bull, 2020, 65(1): 45-54.

    [114] KANG B T, WU S, MA J P, et al. Synergy of sp-N and sp2-N codoping endows graphdiyne with comparable oxygen reduction reaction performance to Pt[J]. Nanoscale, 2019, 11(35): 16599-16605.

    [115] MA D W, LI T X, WANG Q G, et al. Graphyne as a promising substrate for the noble-metal single-atom catalysts[J]. Carbon, 2015, 95: 756-765.

    [116] SRINIVASU K, GHOSH S. Transition metal decorated graphyne: an efficient catalyst for oxygen reduction reaction[J]. J Phys Chem C, 2013, 117: 26021.

    [117] GAO Y, CAI Z W, WU X C, et al. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations[J]. ACS Catal, 2018, 8(11): 10364-10374.

    [118] LI X D, HAN G K, QIAN Z Y, et al. π-conjugation induced anchoring of ferrocene on graphdiyne enable shuttle-free redox mediation in lithium-oxygen batteries[J]. Adv Sci (Weinh), 2022, 9(4): e2103964.

    [119] SHANG H, ZUO Z C, YU L, et al. Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries[J]. Adv Mater, 2018, 30(27): 1801459.

    [120] CHEN L X, JIANG M, LU Z L, et al. Two-dimensional graphdiyne-confined platinum catalyst for hydrogen evolution and oxygen reduction reactions[J]. ACS Appl Mater Interfaces, 2021, 13(40): 47541-47548.

    YAN Xingru, LIU Wenjing, LI Xiaodong, HUANG Changshui. Synthesis and Application of Graphdiyne-Based Oxygen Reduction Catalysts[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2362
    Download Citation