• Optics and Precision Engineering
  • Vol. 16, Issue 8, 1465 (2008)
YANG Li-ping*, GONG Wei-guo, LI Wei-hong, and GU Xiao-hua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    YANG Li-ping, GONG Wei-guo, LI Wei-hong, GU Xiao-hua. Random sampling subspace locality preserving projection for face recognition[J]. Optics and Precision Engineering, 2008, 16(8): 1465 Copy Citation Text show less
    References

    [1] ZHAO W,CHELLAPPA R,ROSENFELD A,et al..Face recognition:a literature survey[R].Technical Report CAR-TR-948,University of Maryland,College Park,2000

    [2] TURK M,PENTLAND A.Face recognition using eigenfaces[C].Proceedings of IEEE CVPR,Havaii,1991:586-591

    [4] BELHUMEUR P,HESPANDA J,KIREGEMAN D.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720

    [5] SCHOLKOPF B,SMOLA A,MULLER K.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319

    [6] KIM K.FRANZ M,SCHOLKOPF B.Iterative kernel principal component analysis for image modeling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27:1352-1366

    [7] BAUDAT G,ANOUAR F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12:2385-2404

    [9] Yu H,YANG J.A direct LDA algorithm for high-dimensional data-with application to face recognition[J].Pattern Recognition,2001,34:2067-2070

    [10] YE J,LI Q.A two-stage linear discriminant analysis via QR-decomposition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):929-941

    [11] CHEN L,MARK L H,KO M,et al..A new LDA-based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33:1713-1726

    [12] YANG M.Face recognition using extended isomap[C].Proceedings of Conference on Image Processing,2002:117-120

    [13] HE X,NIYOGI P.Locality preserving projections[C].Proceedings of Conf.Advances in Neural Information Processing System,2003

    [14] HE X,CAI D,YAN S,et al..Neighborhood preserving embedding[C].Proceedings of Tenth IEEE International Conf.on Computer Vision,2005:1208-1213

    [15] CHEN H,CHANG H,LIU T.Local discriminant embedding and its variants[C].Proceedings of IEEE Computer Society Conf.on Computer Vision and Pattern Recognition,2005:846-853

    [16] YANG J,ZHANG D,YANG J Y,et al..Globally maximizing,locally minimizing:unsupervised discriminant projection with application to face and palm biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):650-664

    [17] YU W W,TENG X L,LIU C Q.Face recognition using discriminant locality preserving projections[J].Image and Vision Computing,2006,24:239-248

    [18] CAI D,HE X,ZHOU K,et al..Locality sensitive discriminant analysis[C].Proceedings of International Confefence on Artificial Intelligence,2007

    [19] WANG X G,TANG X O.Random sampling for subspace face recognition[J].International J.Computer Vision,2006,70(1):91-104

    CLP Journals

    [1] YANG Li-ping, GU Xiao-hua. Relative gradient histogram features for face recognition[J]. Optics and Precision Engineering, 2014, 22(1): 152

    [2] CHEN Chuan-hu, ZOU De-xuan, LIU Hai-kuan. Iris location algorithm by counting distances[J]. Optics and Precision Engineering, 2012, 20(11): 2516

    [3] YANG Li-ping, GU Xiao-hua, YE Hong-wei. Sample locality preserving discriminant analysis for classification[J]. Optics and Precision Engineering, 2011, 19(9): 2205

    [4] CHENG Yu-qi, ZHU Ming, LI Gui-ju, GEI Wei, CHEN Yan-ping. Rapid iris localization based on method of iterative pixel ratio to cirque area[J]. Optics and Precision Engineering, 2010, 18(10): 2306

    YANG Li-ping, GONG Wei-guo, LI Wei-hong, GU Xiao-hua. Random sampling subspace locality preserving projection for face recognition[J]. Optics and Precision Engineering, 2008, 16(8): 1465
    Download Citation