• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201007 (2021)
Zijing Li1、2, Lili Yan2, Peng Zuo3, Liangyue Xie2, Zhiqiang Li2、*, and Bing Jin1、**
Author Affiliations
  • 1Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
  • 2Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Center for Optics and Research Engineer (CORE), Shandong University, Qingdao, Shandong 266237, China;
  • 3College of Environmental Sciences and Engineering, Peking University, Beijing 100080, China
  • show less
    DOI: 10.3788/CJL202148.1201007 Cite this Article Set citation alerts
    Zijing Li, Lili Yan, Peng Zuo, Liangyue Xie, Zhiqiang Li, Bing Jin. Development of Tabletop Femtosecond Vacuum Ultraviolet Laser Source Based on Four-Wave Mixing Techniques[J]. Chinese Journal of Lasers, 2021, 48(12): 1201007 Copy Citation Text show less
    References

    [1] Yang J, Zhu X L, Wolf T J A et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction[J]. Science, 361, 64-67(2018).

    [2] Yang B, Han K L. Charge-carrier dynamics of lead-free halide perovskite nanocrystals[J]. Accounts of Chemical Research, 52, 3188-3198(2019). http://pubs.acs.org/doi/10.1021/acs.accounts.9b00422

    [3] Loh Z H, Doumy G, Arnold C et al. Observation of the fastest chemical processes in the radiolysis of water[J]. Science, 367, 179-182(2020). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM31919219

    [4] Nie Y, Wang Y Y, Wu X Q et al. Ultrafast carrier dynamics in n-type and semi-insulating 6H-SiC crystals[J]. Laser & Optoelectronics Progress, 56, 063201(2019).

    [5] Bartels R A, Paul A, Green H et al. Generation of spatially coherent light at extreme ultraviolet wavelengths[J]. Science, 297, 376-378(2002). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=7134178&site=ehost-live

    [6] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [7] Pertot Y, Schmidt C, Matthews M et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 355, 264-267(2017). http://europepmc.org/abstract/MED/28059713

    [8] Miaja-Avila L, O’Neil G C, Joe Y I et al. Ultrafast time-resolved hard X-ray emission spectroscopy on a tabletop[J]. Physical Review X, 6, 031047(2016).

    [9] Holtz M, Hauf C, Weisshaupt J et al. Towards shot-noise limited diffraction experiments with table-top femtosecond hard X-ray sources[J]. Structural Dynamics, 4, 054304(2017). http://europepmc.org/articles/PMC5517321/

    [10] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).

    [11] Svoboda V, Michiels R, LaForge A C et al. Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses[J]. Science Advances, 6, eaaz0385(2020).

    [12] Yamamoto Y I, Suzuki T. Ultrafast dynamics of water radiolysis: hydrated electron formation, solvation, recombination, and scavenging[J]. The Journal of Physical Chemistry Letters, 11, 5510-5516(2020). http://pubs.acs.org/doi/10.1021/acs.jpclett.0c01468

    [13] Gartmann T E, Ban L, Yoder B L et al. Relaxation dynamics and genuine properties of the solvated electron in neutral water clusters[J]. The Journal of Physical Chemistry Letters, 10, 4777-4782(2019). http://pubs.acs.org/doi/10.1021/acs.jpclett.9b01802

    [14] Bourzac K. Tabletop X-rays light up[J]. Nature, 486, 172(2012).

    [15] Li Z X, Gong C, Hua L Q et al. Supercontinuum generation in calcium fluoride crystals using high-intensity femtosecond laser[J]. Chinese Journal of Lasers, 46, 0508021(2019).

    [16] Li H L, Wang S Q, Fu Y et al. Air lasing: principle, generation, and applications[J]. Chinese Journal of Lasers, 47, 0500017(2020).

    [17] Petrov V, Rotermund F, Noack F et al. Frequency conversion of Ti∶sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 1532-1542(1999).

    [18] Kanai T, Kanda T, Sekikawa T et al. Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti∶sapphire laser[J]. Journal of the Optical Society of America B, 21, 370-375(2004). http://www.opticsinfobase.org/abstract.cfm?URI=josab-21-2-370

    [19] Trabs P, Noack F, Aleksandrovsky A S et al. Generation of coherent radiation in the vacuum ultraviolet using randomly quasi-phase-matched strontium tetraborate[J]. Optics Letters, 41, 618-621(2016). http://www.ncbi.nlm.nih.gov/pubmed/26907438

    [20] Semmlinger M, Zhang M, Tseng M L et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface[J]. Nano Letters, 19, 8972-8978(2019). http://pubs.acs.org/doi/10.1021/acs.nanolett.9b03961

    [21] Konishi K, Akai D, Mita Y et al. Tunable third harmonic generation in the vacuum ultraviolet region using dielectric nanomembranes[J]. APL Photonics, 5, 066103(2020). http://arxiv.org/abs/2002.01734

    [22] Li Q F, Wang H, Shi Y et al. Characteristic study on VUV laser generated by two-photon resonant four wave mixing in xenon[J]. Chinese Journal of Chemical Physics, 333-338(2004).

    [23] Börzsönyi A, Heiner Z, Kalashnikov M P et al. Dispersion measurement of inert gases and gas mixtures at 800 nm[J]. Applied Optics, 47, 4856-4863(2008).

    [24] Bjorklund G. Effects of focusing on third-order nonlinear processes in isotropic media[J]. IEEE Journal of Quantum Electronics, 11, 287-296(1975). http://ieeexplore.ieee.org/document/1068619

    [25] Beutler M, Ghotbi M, Noack F et al. Generation of sub-50-fs vacuum ultraviolet pulses by four-wave mixing in argon[J]. Optics Letters, 35, 1491-1493(2010).

    [26] Misoguti L, Backus S, Durfee C G et al. Generation of broadband VUV light using third-order cascaded processes[J]. Physical Review Letters, 87, 013601(2001). http://europepmc.org/abstract/MED/11461465

    [27] Fuji T, Horio T, Suzuki T. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas[J]. Optics Letters, 32, 2481-2483(2007).

    [28] Durfee C G, Misoguti L, Backus S et al. Phase matching in cascaded third-order processes[J]. Journal of the Optical Society of America B, 19, 822-831(2002). http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-822

    [29] Durfee C G, Backus S, Murnane M M et al. Guided-wave optical parametric amplification in gases: a novel phase-matching technique for ultrafast pulses[M]. //DiMauro L, Murnane M, L’Huillier A. Applications of high-field and short wavelength sources, 71-77(1998).

    [30] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-20-1-73

    [31] Boyd R W. Nonlinear optics[M](2008).

    [32] Horio T, Spesyvtsev R, Suzuki T. Generation of sub-17 fs vacuum ultraviolet pulses at 133 nm using cascaded four-wave mixing through filamentation in Ne[J]. Optics Letters, 39, 6021-6024(2014). http://dx.doi.org/10.1364/ol.39.006021

    [33] Aközbek N, Iwasaki A, Becker A et al. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses[J]. Physical Review Letters, 89, 143901(2002). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=12366048

    [34] Trabs P, Ritze H H, Noack F. Generation of 800 nJ, 133 nm femtosecond Vacuum UV pulses by third harmonic generation in argon[C]. //Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, FM4A, 4(2016).

    [35] Adachi S, Horio T, Suzuki T. Generation of intense single-order harmonic pulse in the vacuum ultraviolet region using a deep ultraviolet driving laser[J]. Optics Letters, 37, 2118-2120(2012). http://europepmc.org/abstract/MED/22660140

    [36] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).

    [37] Schafer K J, Yang B R, DiMauro L F et al. Above threshold ionization beyond the high harmonic cutoff[J]. Physical Review Letters, 70, 1599-1602(1993).

    [38] Kosma K, Trushin S A, Schmid W E et al. Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti: sapphire laser[J]. Optics Letters, 33, 723-725(2008).

    [39] Couch D E, Buckingham G T, Baraban J H et al. Tabletop femtosecond VUV photoionization and PEPICO detection of microreactor pyrolysis products[J]. The Journal of Physical Chemistry A, 121, 5280-5289(2017). http://europepmc.org/abstract/MED/28661692

    [40] Wittmann M, Wick M T, Steinkellner O et al. Generation of femtosecond VUV pulses and their application to time resolved spectroscopy in the gas phase[J]. Optics Communications, 173, 323-331(2000). http://www.sciencedirect.com/science/article/pii/S0030401899006070

    [41] Nazarkin A, Korn G, Kittelmann O et al. Femtosecond-pulse two-photon resonant difference-frequency mixing in gases: a technique for tunable vacuum-ultraviolet femtosecond-pulse generation and a spectroscopic tool for studying atoms in strong laser fields[J]. Physical Review A, 56, 671-684(1997). http://adsabs.harvard.edu/abs/1997PhRvA..56..671N

    [42] Tzankov P, Steinkellner O, Zheng J A et al. High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti: sapphire laser[J]. Optics Express, 15, 6389-6395(2007).

    [43] Durfee C G, Backus S, Kapteyn H C et al. Intense 8-fs pulse generation in the deep ultraviolet[J]. Optics Letters, 24, 697-699(1999). http://www.opticsinfobase.org/ol/abstract.cfm?id=37288

    [44] Jailaubekov A E, Bradforth S E. Tunable 30-femtosecond pulses across the deep ultraviolet[J]. Applied Physics Letters, 87, 021107(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4817350

    [45] Bartlett N C M, Ogi Y, Suzuki T. Ultrafast photoelectron imaging using tunable UV and vacuum UV pulses[J]. Chemistry Letters, 44, 791-793(2015). http://ci.nii.ac.jp/naid/130005074583

    [46] Ghotbi M, Beutler M, Noack F. Generation of 2.5 μJ vacuum ultraviolet pulses with sub-50 fs duration by noncollinear four-wave mixing in argon[J]. Optics Letters, 35, 3492-3494(2010). http://europepmc.org/abstract/med/20967110

    [47] Beutler M, Ghotbi M, Noack F. Generation of intense sub-20-fs vacuum ultraviolet pulses compressed by material dispersion[J]. Optics Letters, 36, 3726-3728(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-19-3726

    [48] Fuji T K, Suzuki T, Serebryannikov E E et al. Experimental and theoretical investigation of a multicolor filament[J]. Physical Review A, 80, 063822(2009). http://adsabs.harvard.edu/abs/2009PhRvA..80f3822F

    [49] Zuo P, Fuji T K, Horio T et al. Simultaneous generation of ultrashort pulses at 158 and 198 nm in a single filamentation cell by cascaded four-wave mixing in Ar[J]. Applied Physics B, 108, 815-819(2012).

    [50] Shi L P, Li W X, Zhou H et al. Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon[J]. Physical Review A, 88, 053825(2013). http://adsabs.harvard.edu/abs/2013PhRvA..88e3825S

    [51] Horio T, Spesyvtsev R, Suzuki T. Simultaneous generation of sub-20 fs deep and vacuum ultraviolet pulses in a single filamentation cell and application to time-resolved photoelectron imaging[J]. Optics Express, 21, 22423-22428(2013). http://www.ncbi.nlm.nih.gov/pubmed/24104131

    [52] Shi L P, Li W X, Zhou H et al. Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control[J]. Applied Physics Letters, 102, 081112(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472142

    [53] Zhou H, Li W X, Shi L P et al. Efficient generation of vacuum and extreme ultraviolet pulses[J]. Laser Physics Letters, 11, 025402(2014). http://adsabs.harvard.edu/abs/2014laphl..11b5402z

    [54] Wang D, Li W, Ding L et al. Enhanced XUV pulse generation at 89 nm via nonlinear interaction of UV femtosecond filaments[J]. Optics Letters, 39, 4140-4143(2014). http://www.ncbi.nlm.nih.gov/pubmed/25121671

    [55] Svoboda V, Ram N B, Rajeev R et al. Time-resolved photoelectron imaging with a femtosecond vacuum-ultraviolet light source: dynamics in the A~/B~- and F~-bands of SO2[J]. The Journal of Chemical Physics, 146, 084301(2017).

    [56] Ghotbi M, Trabs P, Beutler M et al. Generation of tunable sub-45 femtosecond pulses by noncollinear four-wave mixing[J]. Optics Letters, 38, 486-488(2013).

    [57] Hilbig R, Wallenstein R. Narrowband tunable VUV radiation generated by nonresonant sum-and difference-frequency mixing in xenon and krypton[J]. Applied Optics, 21, 913-917(1982).

    [58] Hilber G, Lago A, Wallenstein R. Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton[J]. Journal of the Optical Society of America B, 4, 1753-1764(1987). http://www.opticsinfobase.org/abstract.cfm?uri=josab-4-11-1753

    [59] Marangos J P, Shen N, Ma H et al. Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton[J]. Journal of the Optical Society of America B, 7, 1254-1259(1990). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-7-7-1254

    [60] Wallmeier H, Zacharias H. Continuously tunable VUV radiation (129-210 nm) by anti-Stokes Raman scattering in cooled H2[J]. Applied Physics B, 45, 263-272(1988). http://link.springer.com/article/10.1007/BF00687155

    [61] Tunnermann A, Momma C, Mossavi K et al. Generation of tunable short pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses[J]. IEEE Journal of Quantum Electronics, 29, 1233-1238(1993). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=214511

    [62] Ringling J, Korn G, Squier J et al. Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti∶sapphire laser pulses[J]. Optics Letters, 18, 2035-2037(1993).

    [63] Blanc S P, Qi Z, Sauerbrey R. Femtosecond vacuum-ultraviolet pulse measurement by field-ionization dynamics[J]. Optics Letters, 20, 312-314(1995). http://europepmc.org/abstract/MED/19859171

    [64] Mero M, Zheng J. Femtosecond optical parametric converter in the 168-182-nm range[J]. Applied Physics B, 106, 37-43(2012). http://www.ingentaconnect.com/content/ssam/09462171/2012/00000106/00000001/art00006

    [65] Luu T T, Yin Z, Jain A et al. Extreme-ultraviolet high-harmonic generation in liquids[J]. Nature Communications, 9, 3723(2018). http://www.ncbi.nlm.nih.gov/pubmed/30213950

    Zijing Li, Lili Yan, Peng Zuo, Liangyue Xie, Zhiqiang Li, Bing Jin. Development of Tabletop Femtosecond Vacuum Ultraviolet Laser Source Based on Four-Wave Mixing Techniques[J]. Chinese Journal of Lasers, 2021, 48(12): 1201007
    Download Citation