• Frontiers of Optoelectronics
  • Vol. 10, Issue 3, 255 (2017)
Janis SPIGULIS*
Author Affiliations
  • Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, LV-1586, Latvia
  • show less
    DOI: 10.1007/s12200-017-0717-5 Cite this Article
    Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Frontiers of Optoelectronics, 2017, 10(3): 255 Copy Citation Text show less
    References

    [1] Spigulis J. Biophotonic technologies for noninvasive assessment of skin condition and blood microcirculation. Latvian Journal of Physics and Technical Sciences 2012, 49(5): 63-80

    [2] http://www.imaging.org/site/PDFS/Reporter/Articles/REP27_4_ CIC20_TOMINAGA_p177.pdf (accessed on 12.03.2017)

    [3] Jakovels D, Spigulis J, Rogule L. RGB mapping of hemoglobin distribution in skin. Proceedings of the Society for Photo- Instrumentation Engineers, 2011, 8087: 80872B

    [4] Jakovels D, Kuzmina I, Berzina A, Valeine L, Spigulis J. Noncontact monitoring of vascular lesion phototherapy efficiency by RGB multispectral imaging. Journal of Biomedical Optics, 2013, 18(12): 126019

    [5] Jakovels D, Spigulis J. 2-D mapping of skin chromophores in the spectral range 500 - 700 nm. Journal of Biophotonics, 2010, 3(3): 125-129

    [6] Jakovels D, Spigulis J. RGB imaging device for mapping and monitoring of hemoglobin distribution in skin. Lithuanian Journal of Physics, 2012, 52(1): 50-54

    [7] Philips Vital Signs Camera. http://www.vitalsignscamera.com/ (accessed on 12.03.2017)

    [8] The best heart disease iPhone & Android Apps of the year. http:// www.healthline.com/health-slideshow/top-heart-disease-iphoneandroid- apps#5 (accessed on 12.03.2017)

    [9] kinvision. https://www.skinvision.com/technology-skin-cancermelanoma- mobile-app (accessed on 12.03.2017)

    [10] Spigulis J, Lacis M, Kuzmina I, Lihacovs A, Upmalis V, Rupenheits Z. Method and device for smartphone mapping of tissue compounds. WO 2017/012675 A1, 2017

    [11] Kuzmina I, Lacis M, Spigulis J, Berzina A, Valeine L. Study of smartphone suitability for mapping of skin chromophores. Journal of Biomedical Optics, 2015, 20(9): 090503

    [12] http://www.dino-lite.com/applications_list.php index_id = 8 (accessed on 12.03.2017)

    [13] http://www.dino-lite.com/products_detail.php index_m1_id = 0&index_m2_id = 0&index_id = 61 (accessed on 12.03.2017)

    [14] Diebele I, Kuzmina I, Lihachev A, Kapostinsh J, Derjabo A, Valeine L, Spigulis J. Clinical evaluation of melanomas and common nevi by spectral imaging. Biomedical Optics Express, 2012, 3(3): 467- 472

    [15] Bekina A, Diebele I, Rubins U, Zaharans J, Derjabo A, Spigulis J. Multispectral assessment of skin malformations by modified videomicroscope. Latvian Journal of Physics and Technical Sciences, 2012, 49(5): 4-8

    [16] Bekina A, Rubins U, Lihacova I, Zaharans J, Spigulis J. Skin chromophore mapping by means of a modified video-microscope for skin malformation diagnosis. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8856: 88562G

    [17] Rubins U, Zaharans J, Lihacova I, Spigulis J. Multispectral videomicroscope modified for skin diagnostics. Latvian Journal of Physics and Technical Sciences, 2014, 51(5): 65-70

    [18] Spigulis J, Elste L. Method and device for imaging of spectral reflectance at several wavelength bands. WO2013135311 (A1), 2012

    [19] Spigulis J, Jakovels D, Rubins U. Multi-spectral skin imaging by a consumer photo-camera. Proceedings of the Society for Photo- Instrumentation Engineers, 2010, 7557: 75570M

    [20] Spigulis J, Oshina I. Snapshot RGB mapping of skin melanin and hemoglobin. Journal of Biomedical Optics, 2015, 20(5): 050503

    [21] Spigulis J, Oshina I, Berzina A, Bykov A. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination. Journal of Biomedical Optics, 2017, 22(9): 091508

    [22] Prahl S. Tabulated molar extinction coefficient for hemoglobin in water. http://omlc.ogi.edu/spectra/hemoglobin/summary.html (accessed 30 November 2016)

    [23] Sarna T, Swartz H M. The physical properties of melanin. http:// omlc.ogi.edu/spectra/melanin/eumelanin.html (accessed 30 November 2016)

    [24] Spigulis J, Elste L. Single-snapshot RGB multispectral imaging at fixed wavelengths: proof of concept. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8937: 89370L

    [25] Spigulis J, Oshina I. Method and device for chromophore mapping under illumination by several spectral lines. LV patent 15106 B, 2016

    [26] Rubins U, Kviesis-Kipge E, Spigulis J. Device for obtaining speckle-free images at illumination by scattered laser beams. LV patent application P-17-17, 2017

    [27] Oshina I, Spigulis J, Rubins U, Kviesis-Kipge E, Lauberts K. Express RGB mapping of three to five skin chromophores. OSA Technical Digests, 2017 (ECBO Proceedings, Munich, in press)

    [28] Lihachev A, Lesins Jh D, Jakovels J, Spigulis. Low power cw-laser signatures on human skin. Quantum Electronics, 2011, 40(12): 1077-1080

    [29] Stratonnikov A A, Polikarpov V S, Loschenov V B. Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4241: 13-24

    [30] Lesinsh J, Lihachev A, Rudys R, Bagdonas S, Spigulis J. Skin autofluorescence photobleaching and photo-memory. Proceedings of the Society for Photo-Instrumentation Engineers, 2011, 8092: 80920N

    [31] Spigulis J, Lihachev A, Erts R. Imaging of laser-excited tissue autofluorescence bleaching rates. Applied Optics, 2009, 48(10): D163-D168

    [32] Lihachev A, Derjabo A, Ferulova I, Lange M, Lihacova I, Spigulis J. Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera. Journal of Biomedical Optics, 2015, 20(12): 120502

    [33] Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 2007, 28 (3): R1-R39

    [34] Spigulis J. Optical noninvasive monitoring of skin blood pulsations. Applied Optics, 2005, 44(10): 1850-1857

    [35] Rubins U, Upmalis V, Rubenis O, Jakovels D, Spigulis J. Real-time photoplethysmography imaging system. Proceedings of IFMBE, 2011, 34: 183-186

    [36] Rubins U, Spigulis J, Miscuks A. Photoplethysmography imaging algorithm for continuous monitoring of regional anesthesia. In: Proceedings of the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia, ESTIMedia'16. 2016: 67-71

    [37] Rubins U, Spigulis J, Miscuks A. Application of color magnification technique for revealing skin microcircuration changes under regional anaesthetic input. Proceedings of the Society for Photo- Instrumentation Engineers, 2013, 9032: 903203

    [38] Spigulis J, Gailite L, Lihachev A, Erts R. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography. Applied Optics, 2007, 46(10): 1754-1759

    [39] Marcinkevics Z, Rubins U, Zaharans J, Miscuks A, Urtane E, Ozolina-Moll L. Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths. Journal of Biomedical Optics, 2016, 21(3): 035005

    [40] Spigulis J, Garancis V, Rubins U, Zaharans E, Zaharans J, Elste L. A device for multimodal imaging of skin. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8574: 85740J

    [41] Spigulis J, Rubins U, Kviesis-Kipge E, Rubenis O. SkImager: a concept device for in-vivo skin assessment by multimodal imaging. Proceedings of the Estonian Academy of Sciences, 2014, 63(3): 213-220

    [42] Embedded linux on board computer decsription, https://www. raspberrypi.org/ (accessed on 12.03.2017)

    [43] Industrial USB cameras description, https://en.ids-imaging.com/ (accessed on 12.03.2017)

    [44] Bliznuks D, Jakovels D, Saknite I, Spigulis J. Mobile platform for online processing of multimodal skin optical images: using online Matlab server for processing remission, fluorescence and laser speckle images, obtained by using novel handheld device. In: Proceedings of BioPhotonics 2015 (Florence). 2015: 7304024

    [45] Jakovels D, Saknite I, Bliznuks D, Spigulis J, Kadikis R. Benignatypical nevi discrimination using diffuse reflectance and fluorescence multispectral imaging system. In: Proceedings of BioPhotonics 2015 (Florence). 2015: 7304026

    Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Frontiers of Optoelectronics, 2017, 10(3): 255
    Download Citation