• Matter and Radiation at Extremes
  • Vol. 9, Issue 5, 057802 (2024)
Jinlei Dong1,*, Xuping Zhang1, Guiji Wang1, Xianqian Wu2..., Binqiang Luo1, Xuemiao Chen1, Fuli Tan1, Jianheng Zhao3 and Chengwei Sun1|Show fewer author(s)
Author Affiliations
  • 1Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China
  • 2Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • 3Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621999, China
  • show less
    DOI: 10.1063/5.0206773 Cite this Article
    Jinlei Dong, Xuping Zhang, Guiji Wang, Xianqian Wu, Binqiang Luo, Xuemiao Chen, Fuli Tan, Jianheng Zhao, Chengwei Sun. Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression[J]. Matter and Radiation at Extremes, 2024, 9(5): 057802 Copy Citation Text show less
    References

    [1] E. P.George, D.Raabe, R. O.Ritchie. High-entropy alloys. Nat. Rev. Mater., 4, 515(2019).

    [2] S. X.Bai, S.Li, P. K.Liaw, J. W.Qiao, Y.Tang, R. X.Wang, B.Xiao, Y.Zhang, Z. R.Zhang. A review on the dynamic-mechanical behaviors of high-entropy alloys. Prog. Mater. Sci., 135, 101090(2023).

    [3] S. G.Ma, J. W.Qiao, Z. H.Wang, Y. C.Wu, T. W.Zhang, Y.Zhang, D.Zhao. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling. Int. J. Plast., 124, 226(2020).

    [4] G. B.Bian, H. W.He, Z. M.Jiao, P. K.Liaw, J. W.Qiao, Y. Z.Wang, Z. H.Wang, H. J.Yang. Dynamic tension and constitutive model in Fe40Mn20Cr20Ni20 high-entropy alloys with a heterogeneous structure. Mater. Sci. Eng.: A, 839, 142837(2022).

    [5] X.Jin, P. K.Liaw, J. W.Qiao, K.Wang, Y.Zhang. Dynamic tensile mechanisms and constitutive relationship in CrFeNi medium entropy alloys at room and cryogenic temperatures. Phys. Rev. Mater., 5, 113608(2021).

    [6] J. C.Cheng, A. R.Cui, S. C.Hu, J. Y.Huang, Q.Li, S. N.Luo, S.Zhang. Spall response of medium-entropy alloy CrCoNi under plate impact. Int. J. Mech. Sci., 252, 108331(2023).

    [7] F.Cao, L.Dai, X.Liang, A. M.Minor, R. O.Ritchie, C. J.Ruestes, S.Yin, Q.Yu, R.Zhang, S.Zhao. Deformation and failure of the CrCoNi medium-entropy alloy subjected to extreme shock loading. Sci. Adv., 9, eadf8602(2023).

    [8] J.Cheng, L.Cui, J.Huang, J.Qiao, K.Shi, Z.Wang, H.Yang, M.Zhang. Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys. J. Appl. Phys., 132, 205105(2022).

    [9] Y.Akahama, S. J.Ali, D. G.Braun, J. L.Brown, J. P.Davis, J. H.Eggert, A.Fernandez-Pañella, D. E.Fratanduono, R. G.Kraus, M. C.Marshall, J. M.McNaney, M.Millot, E. F. O’Bannon, C. T.Seagle, R. F.Smith. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science, 372, 1063(2021).

    [10] J. R.Asay, R. C.Cauble, M. D.Furnish, C. A.Hall, M. D.Knudson, D. B.Reisman, A.Toor. Magnetically driven isentropic compression experiments on the Z accelerator. J. Appl. Phys., 89, 1625(2001).

    [11] B.Chen, K.Chen, Y.Cui, J.Dai, H.Geng, D.Kang, Y.Shen, J.Wu, J.Yu, Y.Yu. On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass. Matter Radiat. Extremes, 9, 027802(2024).

    [12] J. C.Cheng, J. Y.Huang, J.Li, S. N.Luo, J. W.Qiao, K. W.Shi, J.Xu, Q.Zhang, X. J.Zhao. Shock compression and spallation of a medium-entropy alloy Fe40Mn20Cr20Ni20. Mater. Sci. Eng.: A, 847, 143311(2022).

    [13] T.Li, Y.Lu, M.Wang, X.Wei, D.Xu. A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys. Microstructures, 2, 2022001(2022).

    [14] S. N.Bland, C.Liu, B.Luo, C.Sun, F.Tan, G.Wang, X.Zhang, F.Zhao, J.Zhao. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate. J. Alloys Compd., 731, 569(2018).

    [15] B.Chen, J.Chen, K.Li, J. F.Lin, H. K.Mao, W.Yang, H.Zheng. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59(2016).

    [16] T. R.Bieler, P.Eisenlohr, L.Hantcherli, D.Raabe, F.Roters, D. D.Tjahjanto. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater., 58, 1152(2010).

    [17] R.Kapoor, S.Nemat-Nasser. Deformation behavior of tantalum and a tantalum tungsten alloy. Int. J. Plast., 17, 1351(2001).

    [18] L.Anand, M.Kothari. Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum. J. Mech. Phys. Solids, 46, 51(1998).

    [19] R. W.Armstrong, S. M.Walley. High strain rate properties of metals and alloys. Int. Mater. Rev., 53, 105(2008).

    [20] R. W.Armstrong, Q. Z.Li. Dislocation mechanics of high-rate deformations. Metall. Mater. Trans. A, 46, 4438(2015).

    [21] K. V.Khishchenko, P. R.Levashov, A. E.Mayer, P. N.Mayer. Modeling of plasticity and fracture of metals at shock loading. J. Appl. Phys., 113, 193508(2013).

    [22] X.Pei, Q.Wu, S.Yao, J.Yu. Assessment of the time-dependent behavior of dislocation multiplication under shock loading. Int. J. Plast., 158, 103434(2022).

    [23] Y.Cui, X.Pei, Q.Wu, S.Yao, J.Yu, Y.Yu. Revisiting the power law characteristics of the plastic shock front under shock loading. Phys. Rev. Lett., 126, 085503(2021).

    [24] T.Chong, B.Luo, J.Mo, C.Sun, F.Tan, Y.Tao, G.Wang, G.Wu, X.Zhang, J.Zhao. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading. Rev. Sci. Instrum., 84, 015117(2013).

    [25] G. H.Chen, X. M.Chen, B. Q.Luo, F. L.Tan, G. J.Wanget?al.. Dynamic strength measurement of aluminum under magnetically driven ramp wave pressure-shear loading. Int. J. Impact Eng., 100, 56(2017).

    [26] X.Chen, B.Luo, X.Pan, H.Peng, C.Sun, F.Tan, G.Wang, X.Zhang, J.Zhao. Uncertainty quantification of magnetically driven quasi-isentropic compression experiments based on Monte Carlo method. Explos. Shock Wave, 43, 031101(2022).

    [27] K. V.Khishchenko, A. E.Mayer. High- and low-entropy layers in solids behind shock and ramp compression waves. Int. J. Mech. Sci., 189, 105971(2021).

    [28] L. H.Dai, J. Y.He, Z. J.Jiang, Z. P.Lu, H. Y.Wang, H. S.Zhang. Shock compression response of high entropy alloys. Mater. Res. Lett., 4, 226(2016).

    [29] S.Chen, Z. D.Feng, J. Y.Huang, L.Lu, S. N.Luo, Y. F.Sun, J.Xu, X. H.Yao, N. B.Zhang, X. J.Zhao. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi. J. Mater. Sci. Technol., 128, 1(2022).

    [30] S. J.Fensin, E. N.Hahn. Influence of defects on the shock Hugoniot of tantalum. J. Appl. Phys., 125, 215902(2019).

    [31] N. K.Bourne, J. E.Field, J. C. F.Millett, Z.Rosenberg. Shear strength measurements in a tungsten alloy during shock loading. J. Appl. Phys., 86, 6707(1999).

    [32] S.Case, I. P.Jones, J. C. F.Millett, B.Pang, G.Whitemanet?al.. The defect evolution in shock loaded tantalum single crystals. Acta Mater., 148, 482(2018).

    [33] J. C.LaSalvia, M. A.Meyers, V. F.Nesterenkoet?al.. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Mater. Sci. Eng.: A, 229, 23(1997).

    [34] H.Wang, S.Yang, Y.Yang. Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy. Mater. Sci. Eng. A, 802, 140440(2021).

    [35] S.Fensin, J.Gigax, M. C.Hawkins, R. S.Hixson, N.Li, C.Liu, S.Thomas, J. A.Valdez. Dynamic properties of FeCrMnNi, a high entropy alloy. Mater. Sci. Eng.: A, 840, 142906(2022).

    [36] I. J.Beyerlein, A.Hunter, L. T. W.Smith, Y.Su, S.Xu. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy. Int. J. Plast., 134, 102850(2020).

    [37] Q. J.Li, E.Ma, H.Sheng. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun., 10, 3563(2019).

    [38] M.Asta, J.Ding, R. O.Ritchie, Q.Yu. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. U. S. A., 115, 8919(2018).

    [39] I. J.Beyerlein, W. R.Jian, Y.Su, Z.Xie, S.Xu, X.Yao. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater., 199, 352(2020).

    [40] H.Bei, R.Huang, K.Jin, J. Y. P.Ko, J. C.Neuefeind, D. C.Pagan, G.Velisa, W. J.Weber, H.Xue, F. X.Zhang, Y. W.Zhang, S. J.Zhao. Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett., 118, 205501(2017).

    [41] M.Asta, Y.Chong, J.Ding, T.Jia, A. M.Minor, C.Ophus, R. O.Ritchie, R.Zhang, S.Zhao. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 581, 283(2020).

    [42] X.Chen, Z.Cheng, P.Jiang, E.Ma, J.Wang, Q.Wang, X.Wu, F.Yuan, H.Zhou, L.Zhou. Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy. Acta Mater., 224, 117490(2022).

    [43] F.Chen, Y.Tian. Short-range order-dependent dislocation mobilities in CrCoNi medium entropy alloy: Atomistic simulations and modeling. Int. J. Plast., 172, 103859(2024).

    [44] G.Eggeler, E. P.George, J.Hunfeld, A.Kostka, G.Laplanche, C.Reinhart. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater., 128, 292(2017).

    [45] C.Cui, K.Du, B.Fu, D.Qi, T.Yao, H.Ye, J.Zhang. Temperature effects on the transition from Lomer-Cottrell locks to deformation twinning in a Ni-Co-based superalloy. Scr. Mater., 125, 24(2016).

    [46] E. P.George, B.Gludovatz, S. X.Mao, R. O.Ritchie, H.Sheng, Z.Wang, Q.Yu, Z.Zhang, Z.Zhang. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun., 8, 14390(2017).

    [47] P.Jiang, E.Ma, Y.Ma, X. L.Wu, M.Yang, F.Yuan. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater., 148, 407(2018).

    [48] Y.Chen, L. H.Dai, T.Li, T. W.Liu, J.Meng, Y.Qiao, H. Y.Wang. A high-entropy alloy syntactic foam with exceptional cryogenic and dynamic properties. Mater. Sci. Eng.: A, 876, 145146(2023).

    [49] X.Li, S.Sun, Y.Tian, J.Wang, Q.Zhu, Y.Zou. Twin-coupled shear bands in an ultrafine-grained CoCrFeMnNi high-entropy alloy deformed at 77 K. Mater. Res. Lett., 10, 385(2022).

    [50] Y. Q.Cheng, A. L.Greer, E.Ma. Shear bands in metallic glasses. Mater. Sci. Eng.: R: Rep., 74, 71(2013).

    [51] Rahul, S.De, A. R.Zamiri. A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX. J. Mech. Phys. Solids, 64, 287(2014).

    [52] J. P.Hirth, J.Lothe, H. M.Zbib. Forces on high velocity dislocations. Modell. Simul. Mater. Sci. Eng., 6, 165(1999).

    [53] R. A.Austin, D. L.McDowell. Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum. Int. J. Plast, 32–33, 134(2012).

    [54] Z.Liu, X.Pei, Q.Wu, S.Yao, J.Yu, Y.Yu. Numerical investigation of the temperature dependence of dynamic yield stress of typical BCC metals under shock loading with a dislocation-based constitutive model. Mech. Mater., 140, 103211(2020).

    [55] R. A.Austin, D. L.McDowell. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast, 27, 1(2011).

    [56] V. V.Bulatov, W.Cai, J.Marian. Dynamic transitions from smooth to rough to twinning in dislocation motion. Nat. Mater., 3, 158(2004).

    [57] N. R.Barton, B. S.El-Dasher, J. N.Florando, M.Kumar, J. M.Mcnaney. Analysis of deformation twinning in tantalum single crystals under shock loading conditions. J. Appl. Phys., 113, 083522(2013).

    [58] H.Bei, E.George, G. M.Pharr, Z.Wu. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater., 81, 428(2014).

    [59] Y.Cui, Y.Li, X.Pei, H.Peng, Q.Wu, S.Yao, J.Yu, H.Zhang. A coupled phase-field and crystal plasticity model for understanding shock-induced phase transition of iron. Int. J. Plast., 172, 103860(2023).

    [60] T.Chong, F.Huang, Y.Wu, Y.Wu, K.Yanget?al.. A unified model of anisotropy, thermoelasticity, inelasticity, phase transition and reaction for high-pressure ramp-loaded RDX single crystal. Int. J. Plast., 144, 103048(2021).

    Jinlei Dong, Xuping Zhang, Guiji Wang, Xianqian Wu, Binqiang Luo, Xuemiao Chen, Fuli Tan, Jianheng Zhao, Chengwei Sun. Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression[J]. Matter and Radiation at Extremes, 2024, 9(5): 057802
    Download Citation