• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 7, 2243 (2024)
QIN Jiachen, GAO Yan, JIAO Zhenjun, ZHANG Jin, and YAN Zilin*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20240051 Cite this Article
    QIN Jiachen, GAO Yan, JIAO Zhenjun, ZHANG Jin, YAN Zilin. Microwave Sintering of Proton-Conducting Electrolyte Yttrium-Doped Barium Cerium Zirconate and Its Electrochemical and Mechanical Properties[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2243 Copy Citation Text show less
    References

    [1] HUANG Jianbing, YANG Lizhai, PENG Ranran, et al. Acta Energ Solar Sin, 2005, 26(1): 134-140.

    [2] CHEN Li, ZHANG Qifei, WANG Lijun, et al. Chin J Nonferrous Met, 2021, 31(11): 3217-3231.

    [3] YANG L, ZUO C D, LIU M L. High-performance anode-supported Solid Oxide Fuel Cells based on Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY) fabricated by a modified co-pressing process[J]. J Power Sources, 2010, 195(7): 1845-1848.

    [4] LIN X L, BABAR Z U D, GAO Y, et al. Influence of triple sintering additives (BaO-CuO-B2O3) on the sintering behavior and conductivity of the proton-conducting BaZr0.1Ce0.7Y0.2O3?δ electrolyte sintered at 1 150 ℃[J]. ACS Appl Energy Mater, 2023, 6(9): 4833-4843.

    [5] KINDELMANN M, EBERT J N, SCHELD W S, et al. Cold sintering of BaZr0.7Ce0.2Y0.1O3-δ ceramics by controlling the phase composition of the starting powders[J]. Scr Mater, 2023, 224: 115147.

    [6] RYBAKOV K I, OLEVSKY E A, KRIKUN E V. Microwave sintering: Fundamentals and modeling[J]. J Am Ceram Soc, 2013, 96(4): 1003-1020.

    [7] JIAO Z J, SHIKAZONO N, KASAGI N. Comparison of ultra-fast microwave sintering and conventional thermal sintering in manufacturing of anode support solid oxide fuel cell[J]. J Power Sources, 2010, 195(24): 8019-8027.

    [8] KIM K J, PARK J H, LEE K T. Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering technology[J]. Korean J Chem Eng, 2020, 37(8): 1436-1439.

    [9] JIAO Z J, SHIKAZONO N, KASAGI N. Performance of an anode support solid oxide fuel cell manufactured by microwave sintering[J]. J Power Sources, 2010, 195(1): 151-154.

    [10] VENKATARAMANA K, MADHURI C, SHANKER J, et al. Microwave-sintered Pr3+, Sm3+, and Gd3+ triple-doped ceria electrolyte material for IT-SOFC applications[J]. Ionics, 2018, 24(10): 3075-3084.

    [11] XU X, BI L, ZHAO X S. Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells[J]. J Membr Sci, 2018, 558: 17-25.

    [12] WANG B, LIU X H, BI L, et al. Fabrication of high-performance proton-conducting electrolytes from microwave prepared ultrafine powders for solid oxide fuel cells[J]. J Power Sources, 2019, 412: 664-669.

    [13] ZHONG Z Y, XU X Q, ZHANG Z H, et al. Microwave sintering of high-performance BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) electrolytes for intermediate-temperature solid oxide fuel cells[J]. Int J Hydrog Energy, 2022, 47(60): 25367-25377.

    [14] ZUO C, ZHA S, LIU M, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells[J]. Adv Mater, 2006, 18(24): 3318-3320.

    [15] YAN Weilu, DING Hao, FAN Zhenkun, et al. Shandong Ceram, 2018, 41(6): 1-4.

    [17] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J Mater Res, 1992, 7(6): 1564-1583.

    [18] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: The median/radial crack system[J]. J Am Ceram Soc, 1980, 63(9-10): 574-581.

    [19] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. J Am Ceram Soc, 1981, 64(9): 533-538.

    [20] JIS R 1607 Testing Methods for Fracture Toughness of High Performance Ceramics. Japanese Standards Association, Tokyo, 1990.

    [21] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. J Am Ceram Soc, 1976, 59(7-8): 371-372.

    [22] NIIHARA K, MORENA R, HASSELMAN D P H. Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios[J]. J Mater Sci Lett, 1982, 1(1): 13-16.

    [23] ZHU Zhenfeng, SUN Haijiao, YANG Jun, et al. Insul Surge Arresters, 2004(1): 10-14.

    [24] RUAN Fei, TIAN Zhen, BAO Jinxiao. J Inn Mong Univ Sci Technol[J]. 2018, 37(4): 321-325.

    [25] SUN H B, ZHANG S L, LI C X, et al. Atmospheric plasma-sprayed BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) electrolyte membranes for intermediate-temperature solid oxide fuel cells[J]. Ceram Int, 2016, 42(16): 19231-19236.

    [26] ZHONG Z Y, SONG T, ZHAO S K, et al. High-performance BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) protonic ceramic fuel cell electrolytes by the Ba evaporation inhibition strategy[J]. Ceram Int, 2024, 50(2): 3633-3640.

    [27] YANG K, WANG J X, XUE Y J, et al. Synthesis, sintering behavior and electrical properties of Ba(Zr0.1Ce0.7Y0.2)O3-δ and Ba(Zr0.1Ce0.7Y0.1Yb0.1)O3-δ proton conductors[J]. Ceram Int, 2014, 40(9): 15073-15081.

    [28] YANG P F, CHEN D L, JIAN S R, et al. Mechanical properties of Ba1-xKxCe0.6Zr0.2Y0.2O3-δ oxides by nanoindentation[J]. Procedia Eng, 2014, 79: 599-605.

    QIN Jiachen, GAO Yan, JIAO Zhenjun, ZHANG Jin, YAN Zilin. Microwave Sintering of Proton-Conducting Electrolyte Yttrium-Doped Barium Cerium Zirconate and Its Electrochemical and Mechanical Properties[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2243
    Download Citation