• Nano-Micro Letters
  • Vol. 16, Issue 1, 049 (2024)
Jin Zhou1, Shenghan Zhou1, Peidi Fan1, Xunjia Li1,2..., Yibin Ying1,2, Jianfeng Ping1,2,* and Yuxiang Pan1,2,**|Show fewer author(s)
Author Affiliations
  • 1Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People’s Republic of China
  • 2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01274-4 Cite this Article
    Jin Zhou, Shenghan Zhou, Peidi Fan, Xunjia Li, Yibin Ying, Jianfeng Ping, Yuxiang Pan. Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information[J]. Nano-Micro Letters, 2024, 16(1): 049 Copy Citation Text show less
    References

    [1] S. Neethirajan, S.K. Tuteja, S.T. Huang, D. Kelton, Recent advancement in biosensors technology for animal and livestock health management. Biosens. Bioelectron. 98, 398–407 (2017).

    [2] D. Giansanti, G. Maccioni, The mhealth in the canine assisted therapy: the proposal of a conceptual model for the wearable monitoring. Mhealth 5, 51 (2019).

    [3] M. Mostafa, A. Barhoum, E. Sehit, H. Gewaid, E. Mostafa et al., Current trends in covid-19 diagnosis and its new variants in physiological fluids: surface antigens, antibodies, nucleic acids, and RNA sequencing. Trends Analyt. Chem. 157, 116750 (2022).

    [4] J. Min, J.R. Sempionatto, H. Teymourian, J. Wang, W. Gao, Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 172, 112750 (2021).

    [5] P. Pulugu, S. Ghosh, S. Rokade, K. Choudhury, N. Arya et al., A perspective on implantable biomedical materials and devices for diagnostic applications. Curr. Opin. Biomed. Eng. 18, 100287 (2021).

    [6] C. Steiger, A. Abramson, P. Nadeau, A.P. Chandrakasan, R. Langer et al., Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4(2), 83–98 (2019).

    [7] A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32(7), 363–371 (2014).

    [8] M. De Santis, I. Cacciotti, Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. Nanotechnology 31(25), 252001 (2020).

    [9] A. Zebda, S. Cosnier, J.P. Alcaraz, M. Holzinger, A. Le Goff et al., Single glucose biofuel cells implanted in rats power electronic devices. Sci. Rep. 3(1), 1516 (2013).

    [10] H. Teymourian, A. Barfidokht, J. Wang, Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Sci. Rev. 49(21), 7671–7709 (2020).

    [11] W. Zhang, L. Zhang, H. Gao, W. Yang, S. Wang et al., Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano-Micro Lett. 10(2), 32 (2018).

    [12] B. Yang, X. Fang, J. Kong, Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Adv. Funct. Mater. 30(24), 2000591 (2020).

    [13] W. Lee, S.-H. Jeong, Y.-W. Lim, H. Lee, J. Kang et al., Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Sci. Adv. 7(48), eabi6290 (2021).

    [14] X. Li, X. Huang, J. Mo, H. Wang, Q. Huang et al., A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv. Sci. 8(16), 2100827 (2021).

    [15] J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop et al., A tissue-like neurotransmitter sensor for the brain and gut. Nature 606(7912), 94–101 (2022).

    [16] F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel et al., An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    [17] H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narvaez, F. Guder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022).

    [18] M. Dervisevic, M. Alba, L. Yan, M. Senel, T.R. Gengenbach et al., Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv. Funct. Mater. 32(3), 2009850 (2022).

    [19] S. Liu, M.-N. Jin, Y.-S. Quan, F. Kamiyama, H. Katsumi et al., The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J. Controll. Release 161(3), 933–941 (2012).

    [20] Y. Zhou, B. Liu, Y. Lei, L. Tang, T. Li et al., Acupuncture needle-based transistor neuroprobe for in vivo monitoring of neurotransmitter. Small 18(52), 2204142 (2022).

    [21] Y. Zhou, F. Ding, G.-J. Zhang, L.-N. Tang, Y.-T. Li, Micro-needle electrode for real-time monitoring of norepinephrine in rat central nervous system. Chin. J. Anal. Chem. 49(11), 35–40 (2021).

    [22] J.-X. Zhou, F. Ding, L.-N. Tang, T. Li, Y.-H. Li et al., Monitoring of pH changes in a live rat brain with MoS /PAN functionalized microneedles. Analyst 143(18), 4469–4475 (2018).

    [23] L. Tang, Y. Li, H. Xie, Q. Shu, F. Yang et al., A sensitive acupuncture needle microsensor for real-time monitoring of nitric oxide in acupoints of rats. Sci. Rep. 7(1), 6446 (2017).

    [24] T. Lin, Y. Xu, A. Zhao, W. He, F. Xiao, Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: a review. Anal. Chim. Acta 1207, 339461 (2022).

    [25] C. Wei, Y. Wang, W. Pei, X. Han, L. Lin et al., Distributed implantation of a flexible microelectrode array for neural recording. Microsyst. Nanoeng. (2022).

    [26] X. Jin, G. Li, T. Xu, L. Su, D. Yan et al., Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 196, 113760 (2022).

    [27] W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan et al., Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 30(23), 1800917 (2018).

    [28] B. Yang, J. Kong, X. Fang, Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat. Commun. 13(1), 3999 (2022).

    [29] S. Correa, A.K. Grosskopf, H.L. Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121(18), 11385–11457 (2021).

    [30] S. Wang, Y. Liu, A. Zhu, Y. Tian, In vivo electrochemical biosensors: recent advances in molecular design, electrode materials, and electrochemical devices. Anal. Chem. 95(1), 388–406 (2023).

    [31] S. Moussa, J. Mauzeroll, Review—microelectrodes: an overview of probe development and bioelectrochemistry applications from 2013 to 2018. J. Electrochem. Soc. 166(6), G25–G38 (2019).

    [32] H. Zeng, N. Gao, Y. Yin, M. Zhang, Recent progress in improving the performance of in vivo electrochemical microsensor based on materials. Curr. Opin. Electrochem. 33, 100957 (2022).

    [33] R. Liu, Z.-Y. Feng, D. Li, B. Jin, Y. Lan et al., Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: a review. Trends Analyt. Chem. 148, 116541 (2022).

    [34] S. Ding, G. Shi, A. Zhu, Stimuli-responsive polymers for interface engineering toward enhanced electrochemical analysis of neurochemicals. Chem. Commun 58(95), 13171–13187 (2022).

    [35] S. Tajik, H. Beitollahi, F.G. Nejad, I.S. Shoaie, M.A. Khalilzadeh et al., Recent developments in conducting polymers: applications for electrochemistry. RSC Adv. 10(62), 37834–37856 (2020).

    [36] S. Wang, J.Y. Oh, J. Xu, H. Tran, Z. Bao, Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51(5), 1033–1045 (2018).

    [37] N. Ashammakhi, A.L. Hernandez, B.D. Unluturk, S.A. Quintero, N.R. Barros et al., Biodegradable implantable sensors: materials design, fabrication, and applications. Adv. Funct. Mater. 31(49), 2104149 (2021).

    [38] W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert et al., Fabrication of photonic crystals in silicon-on-insulator using 248 nm deep UV lithography. IEEE J. Sel. Top. Quantum Electron. 8(4), 928–934 (2002).

    [39] N. Harpak, E. Borberg, A. Raz, F. Patolsky, The “bloodless” blood test: intradermal prick nanoelectronics for the blood extraction-free multiplex detection of protein biomarkers. ACS Nano 16(9), 13800–13813 (2022).

    [40] C. Wei, Y. Wang, W. Pei, X. Han, L. Lin et al., Distributed implantation of a flexible microelectrode array for neural recording. Microsyst. Nanoeng. 8(1), 50 (2022).

    [41] K. Lee, H.C. Lee, D.S. Lee, H. Jung, Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22(4), 483–486 (2010).

    [42] Z. Chen, L. Ren, J. Li, L. Yao, Y. Chen et al., Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 65, 283–291 (2018).

    [43] Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu et al., Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10(35), 29338–29346 (2018).

    [44] R. Herbert, H.R. Lim, S. Park, J.H. Kim, W.H. Yeo, Recent advances in printing technologies of nanomaterials for implantable wireless systems in health monitoring and diagnosis. Adv. Healthc. Mater. 10(17), e2100158 (2021).

    [45] M.A. Shah, D.-G. Lee, B.-Y. Lee, S. Hur, Classifications and applications of inkjet printing technology: a review. IEEE Access 9, 140079–140102 (2021).

    [46] Z. Pu, J. Tu, R. Han, X. Zhang, J. Wu et al., A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3d nanostructure for implantable continuous glucose monitoring. Lab Chip 18(23), 3570–3577 (2018).

    [47] Q. Huang, Y. Zhu, Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv. Mater. Technol. 4(5), 1800546 (2019).

    [48] V.P. Rachim, S.-M. Park, Review of 3D-printing technologies for wearable and implantable bio-integrated sensors. Essays Biochem. 65, 491–502 (2021).

    [49] Y. Liu, Q. Yu, X. Luo, L. Yang, Y. Cui, Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 7(1), 75 (2021).

    [50] Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen et al., Polymer-based device fabrication and applications using direct laser writing technology. Polymers 11(3), 553 (2019).

    [51] M.A. Ali, C. Hu, E.A. Yttri, R. Panat, Panat, Recent advances in 3D printing of biomedical sensing devices. Adv. Funct. Mater. 32(9), 2107671 (2022).

    [52] M.S. Saleh, S.M. Ritchie, M.A. Nicholas, H.L. Gordon, C. Hu et al., CMU array: a 3d nanoprinted, fully customizable highdensity microelectrode array platform. Sci. Adv. 8(40), eabj4853 (2022).

    [53] Z. Sartawi, C. Blackshields, W. Faisal, Dissolving microneedles: applications and growing therapeutic potential. J. Controll. Release 348, 186–205 (2022).

    [54] P. GhavamiNejad, A. GhavamiNejad, H. Zheng, K. Dhingra, M. Samarikhalaj et al., A conductive hydrogel microneedle-based assay integrating pedot: pss and ag-pt nanoparticles for real-time, enzyme-less, and electrochemical sensing of glucose. Adv. Healthc. Mater. 12(1), e2202362 (2023).

    [55] E. García-López, H.R. Siller, C.A. Rodríguez, Study of the fabrication of aisi 316l microneedle arrays. Proc. Manuf. 26, 117–124 (2018).

    [56] D. Rodrigues, A.I. Barbosa, R. Rebelo, I.K. Kwon, R.L. Reis et al., Skin-integrated wearable systems and implantable biosensors: a comprehensive review. Biosensors 10(7), 79 (2020).

    [57] A.M. Stiller, B.J. Black, C. Kung, A. Ashok, S.F. Cogan et al., A meta-analysis of intracortical device stiffness and its correlation with histological outcomes. Micromachines 9(9), 443 (2018).

    [58] R. Fiáth, A.L. Márton, F. Mátyás, D. Pinke, G. Márton et al., Slow insertion of silicon probes improves the quality of acute neuronal recordings. Sci. Rep. 9(1), 111 (2019).

    [59] P.H. Kvist, T. Iburg, B. Aalbaek, M. Gerstenberg, C. Schoier et al., Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Technol. Ther. 8(5), 546–559 (2006).

    [60] A. Molinero-Fernandez, A. Casanova, Q. Wang, M. Cuartero, G.A. Crespo, In vivo transdermal multi-ion monitoring with a potentiometric microneedle-based sensor patch. ACS Sens. 8(1), 158–166 (2023).

    [61] F. Ribet, G. Stemme, N. Roxhed, Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices 20(4), 101 (2018).

    [62] P. Zan, A. Than, P.K. Duong, J. Song, C. Xu et al., Antimicrobial microneedle patch for treating deep cutaneous fungal infection. Adv. Ther. 2(10), 1900064 (2019).

    [63] Z.S. Miripour, P. Aghaee, F. Abbasvandi, P. Hoseinpour, H. Ghafari et al., Electrically guided interventional radiology, in-vivo electrochemical tracing of suspicious lesions to breast cancer prior to core needle biopsy. Biosens. Bioelectron. 161, 112209 (2020).

    [64] P.J. Rousche, R.A. Normann, A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20(4), 413–422 (1992).

    [65] L. Chauvière, F. Pothof, K.S. Gansel, J. Klon-Lipok, A.A.A. Aarts et al., In vivo recording quality of mechanically decoupled floating versus skull-fixed silicon-based neural probes. Front. Neurosci. 13, 464 (2019).

    [66] D. Atkinson, T. D’Souza, J.S. Rajput, N. Tasnim, J. Muthuswamy et al., Advances in implantable microelectrode array insertion and positioning. Neuromodulation 25, 789–795 (2022).

    [67] L. Gao, J. Wang, S. Guan, M. Du, K. Wu et al., Magnetic actuation of flexible microelectrode arrays for neural activity recordings. Nano Lett. 19(11), 8032–8039 (2019).

    [68] M.S. Fee, A. Leonardo, Miniature motorized microdrive and commutator system for chronic neural recording in small animals. J. Neurosci. Methods 112(2), 83–94 (2001).

    [69] C. Pang, Y.C. Tai, J.W. Burdick, R.A. Andersen, Electrolysis-based parylene balloon actuators for movable neural probes. 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems 913–916 (2007).

    [70] F. Vitale, D.G. Vercosa, A.V. Rodriguez, S.S. Pamulapati, F. Seibt et al., Fluidic microactuation of flexible electrodes for neural recording. Nano Lett. 18(1), 326–335 (2018).

    [71] T. Naghdi, S. Ardalan, Z. Asghari Adib, A.R. Sharifi, H. Golmohammadi, Moving toward smart biomedical sensing. Biosens. Bioelectron. 223, 115009 (2022).

    [72] A.K. Yadav, D. Verma, R.K. Sajwan, M. Poddar, S.K. Yadav et al., Nanomaterial-based electrochemical nanodiagnostics for human and gut metabolites diagnostics: recent advances and challenges. Biosensors 12(9), 733 (2022).

    [73] C. Keibl, M. Kerbl, C.J. Schlimp, Comparison of ringer’s solution with 0.4% glucose or without in intraoperative infusion regimens for the prevention of hypoglycemia in juvenile pigs. Lab. Anim. 48(2), 170–176 (2014).

    [74] C. Shaefer, D. Hinnen, C. Sadler, Hypoglycemia and diabetes: increased need for awareness. Curr. Med. Res. Opin. 32(9), 1479–1486 (2016).

    [75] O. Mosenzon, A.Y.Y. Cheng, A.A. Rabinstein, S. Sacco, Diabetes and stroke: what are the connections? J. Stroke 25(1), 26–38 (2023).

    [76] B.W.C. Bongaerts, W. Rathmann, B. Kowall, C. Herder, D. Stöckl et al., Postchallenge hyperglycemia is positively associated with diabetic polyneuropathy: the kora f4 study. Diabetes Care 35(9), 1891–1893 (2012).

    [77] A.V.A. Mariadoss, A.S. Sivakumar, C.-H. Lee, S.J. Kim, Diabetes mellitus and diabetic foot ulcer: etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomed. Pharmacother. 151, 113134 (2022).

    [78] L. Johnston, G. Wang, K. Hu, C. Qian, G. Liu, Advances in biosensors for continuous glucose monitoring towards wearables. Front. Bioeng. Biotechnol. 9, 733810 (2021).

    [79] L. Heinemann, A. Stuhr, A. Brown, G. Freckmann, M.D. Breton et al., Self-measurement of blood glucose and continuous glucose monitoring—is there only one future? Eur. Endocrinol. 14(2), 24–29 (2018).

    [80] M.N. Chien, Y.J. Chen, C.H. Bai, J.T. Huang, Continuous glucose monitoring system based on percutaneous microneedle array. Micromachines 13(3), 478 (2022).

    [81] Y. Zou, Z. Chu, J. Guo, S. Liu, X. Ma et al., Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective. Biosens. Bioelectron. 225, 115103 (2023).

    [82] M.H. Hassan, C. Vyas, B. Grieve, P. Bartolo, Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 21(14), 4672 (2021).

    [83] K.B. Kim, W.-C. Lee, C.-H. Cho, D.-S. Park, S.J. Cho et al., Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sens. Actuators B Chem. 281, 14–21 (2019).

    [84] Y. Cheng, X. Gong, J. Yang, G. Zheng, Y. Zheng et al., A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens. Bioelectron. 203, 114026 (2022).

    [85] K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100–118 (2014).

    [86] G. Wang, X. He, L. Wang, A. Gu, Y. Huang et al., Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180(3), 161–186 (2013).

    [87] S.R. Chinnadayyala, J. Park, A.T. Satti, D. Kim, S. Cho, Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles. Electrochim. Acta 369, 137691 (2021).

    [88] J. Wang, Z. Lu, R. Cai, H. Zheng, J. Yu et al., Microneedle-based transdermal detection and sensing devices. Lab Chip 23, 869–887 (2023).

    [89] A.E. Jones, M.A. Puskarich, Sepsis-induced tissue hypoperfusion. Crit. Care Clin. 25(4), 769–779 (2009).

    [90] P. Bollella, S. Sharma, A.E.G. Cass, R. Antiochia, Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019).

    [91] M. Braendlein, A.-M. Pappa, M. Ferro, A. Lopresti, C. Acquaviva et al., Lactate detection in tumor cell cultures using organic transistor circuits. Adv. Mater. 29(13), 1605744 (2017).

    [92] Q. Li, Y. Zhang, H. Fan, Y. Gong, Y. Xu et al., In vitro and in vivo detection of lactate with nanohybrid-functionalized pt microelectrode facilitating assessment of tumor development. Biosens. Bioelectron. 191, 113474 (2021).

    [93] P. Yanez-Sedeno, S. Campuzano, J.M. Pingarron, Multiplexed electrochemical immunosensors for clinical biomarkers. Sensors 17(5), 965 (2017).

    [94] J. Gao, W. Huang, Z. Chen, C. Yi, L. Jiang, Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 287, 102–110 (2019).

    [95] Y. Xiang, C. Hu, G. Wu, S. Xu, Y. Li, Nanomaterial-based microfluidic systems for cancer biomarker detection: recent applications and future perspectives. Trends Analyt. Chem. 158, 116835 (2023).

    [96] A. Koklu, D. Ohayon, S. Wustoni, V. Druet, A. Saleh et al., Organic bioelectronic devices for metabolite sensing. Chem. Rev. 122(4), 4581–4635 (2022).

    [97] B. Ciui, A. Martin, R.K. Mishra, B. Brunetti, T. Nakagawa et al., Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv. Healthc. Mater. 7(7), e1701264 (2018).

    [98] M. Dervisevic, M. Alba, T.E. Adams, B. Prieto-Simon, N.H. Voelcker, Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosens. Bioelectron. 192, 113496 (2021).

    [99] Z. Zhang, P. Sen, B.R. Adhikari, Y. Li, L. Soleymani, Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew. Chem. Int. Ed. 61(50), e202212496 (2022).

    [100] A.V. Anzalone, L.W. Koblan, D.R. Liu, Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38(7), 824–844 (2020).

    [101] K. Fijorek, M. Puskulluoglu, D. Tomaszewska, R. Tomaszewski, A. Glinka et al., Serum potassium, sodium and calcium levels in healthy individuals—literature review and data analysis. Folia Med. Cracov. 54(1), 53–70 (2014)

    [102] G.J. Casimir, N. Lefevre, F. Corazza, J. Duchateau, M. Chamekh, The acid-base balance and gender in inflammation: a mini-review. Front. Immunol. 9, 475 (2018).

    [103] S. Odinotski, K. Dhingra, A. GhavamiNejad, H. Zheng, P. GhavamiNejad et al., A conductive hydrogel-based microneedle platform for real-time pH measurement in live animals. Small 18(45), 2200201 (2022).

    [104] C. Li, Y. Zhuo, X. Xiao, S. Li, K. Han et al., Facile electrochemical microbiosensor based on in situ self-assembly of Ag nanoparticles coated on Ti(3)C(2)T(x) for in vivo measurements of chloride ions in the Pd mouse brain. Anal. Chem. 93(21), 7647–7656 (2021).

    [105] D. Bennet, Y. Khorsandian, J. Pelusi, A. Mirabella, P. Pirrotte et al., Molecular and physical technologies for monitoring fluid and electrolyte imbalance: a focus on cancer population. Clin. Transl. Med. 11(6), e461 (2021).

    [106] F. Zhao, G.-Y. Shi, Y. Tian, Simultaneous determination of glutamate and calcium ion in rat brain during spreading depression and ischemia processes. Chin. J. Anal. Chem. 47(3), 347–354 (2019).

    [107] D.D. Zhu, Y.R. Tan, L.W. Zheng, J.Z. Lao, J.Y. Liu et al., Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces 15, 14146–14154 (2023).

    [108] Y. Zhang, K. Chi, J. Xiao, Y. Xu, A. Zhao et al., Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue. Biosens. Bioelectron. 150, 111924 (2020).

    [109] Y. Da, S. Luo, Y. Tian, Real-time monitoring of neurotransmitters in the brain of living animals. ACS Appl. Mater. Interfaces 15(1), 138–157 (2023).

    [110] Z.-Z. Si, C.-J. Zou, X. Mei, X.-F. Li, H. Luo et al., Targeting neuroinflammation in alzheimer’s disease: from mechanisms to clinical applications. Neural Regen. Res. 18(4), 708–715 (2023).

    [111] L.F. Burbulla, P. Song, J.R. Mazzulli, E. Zampese, Y.C. Wong et al., Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in parkinson’s disease. Science 357(6357), 1255 (2017).

    [112] R.I. Teleanu, A.G. Niculescu, E. Roza, O. Vladacenco, A.M. Grumezescu et al., Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci. 23(11), 5954 (2022).

    [113] A.N. Vaneev, R.V. Timoshenko, P.V. Gorelkin, N.L. Klyachko, Y.E. Korchev et al., Nano- and microsensors for in vivo real-time electrochemical analysis: present and future perspectives. Nanomaterials 12(21), 3736 (2022).

    [114] K. Guzman-Ramos, D. Osorio-Gomez, F. Bermudez-Rattoni, Cognitive impairment in alzheimer’s and metabolic diseases: a catecholaminergic hypothesis. Neuroscience 497, 308–323 (2022).

    [115] A.K. Hurben, N.Y. Tretyakova, Role of protein damage inflicted by dopamine metabolites in parkinson’s disease: evidence, tools, and outlook. Chem. Res. Toxicol. 35(10), 1789–1804 (2022).

    [116] G. Novak, M.V. Seeman, Dopamine, psychosis, and symptom fluctuation: a narrative review. Healthcare (2022).

    [117] Y. Tang, X.K. Yang, X.W. Zhang, W.T. Wu, F.L. Zhang et al., Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem. Sci. 11(3), 778–785 (2019).

    [118] C. He, M. Tao, C. Zhang, Y. He, W. Xu et al., Microelectrode-based electrochemical sensing technology for in vivo detection of dopamine: recent developments and future prospects. Crit. Rev. Anal. Chem. 52(3), 544–554 (2022).

    [119] T. Feng, W. Ji, Q. Tang, H. Wei, S. Zhang et al., Low-fouling nanoporous conductive polymer-coated microelectrode for in vivo monitoring of dopamine in the rat brain. Anal. Chem. 91(16), 10786–10791 (2019).

    [120] Z. Hsine, R. Mlika, N. Jaffrezic-Renault, H. Korri-Youssoufi, Review—recent progress in graphene based modified electrodes for electrochemical detection of dopamine. Chemosensors 10(7), 249 (2022).

    [121] I.M. Taylor, N.A. Patel, N.C. Freedman, E. Castagnola, X.T. Cui, Direct in vivo electrochemical detection of resting dopamine using poly(3,4-ethylenedioxythiophene)/carbon nanotube functionalized microelectrodes. Anal. Chem. 91(20), 12917–12927 (2019).

    [122] X. Chen, J. Chen, H. Dong, Q. Yu, S. Zhang et al., Sensitive detection of dopamine using a platinum microelectrode modified by reduced graphene oxide and gold nanoparticles. J. Electroanal. Chem. 848, 113244 (2019).

    [123] P. Puthongkham, B.J. Venton, Recent advances in fast-scan cyclic voltammetry. Analyst 145(4), 1087–1102 (2020).

    [124] A. Abdalla, A. West, Y. Jin, R.A. Saylor, B. Qiang et al., Fast serotonin voltammetry as a versatile tool for mapping dynamic tissue architecture: I. responses at carbon fibers describe local tissue physiology. J. Neurochem. 153(1), 33–50 (2020).

    [125] Y. Sun, T.N.H. Nguyen, A. Anderson, X. Cheng, T.E. Gage et al., In vivo glutamate sensing inside the mouse brain with perovskite nickelate-nafion heterostructures. ACS Appl. Mater. Interfaces 12(22), 24564–24574 (2020).

    [126] S.S. Chu, H.A. Nguyen, D. Lin, M. Bhatti, C.E. Jones-Tinsley et al., Development of highly sensitive, flexible dual l-glutamate and gaba microsensors for in vivo brain sensing. Biosens. Bioelectron. 222, 114941 (2023).

    [127] X. Wang, T. Xu, Y. Zhang, N. Gao, T. Feng et al., In vivo detection of redox-inactive neurochemicals in the rat brain with an ion transfer microsensor. ACS Sens. 6(7), 2757–2762 (2021).

    [128] Y. Luo, R. Lin, Y. Zuo, Z. Zhang, Y. Zhuo et al., Efficient electrochemical microsensor for in vivo monitoring of H2 O2 in PD mouse brain: rational design and synthesis of recognition molecules. Anal. Chem. 94(25), 9130–9139 (2022).

    [129] L. Liu, L. Zhang, Z. Dai, Y. Tian, A simple functional carbon nanotube fiber for in vivo monitoring of NO in a rat brain following cerebral ischemia. Analyst 142(9), 1452–1458 (2017).

    [130] A. Meiller, E. Sequeira, S. Marinesco, Electrochemical nitric oxide microsensors based on a fluorinated xerogel screening layer for in vivo brain monitoring. Anal. Chem. 92(2), 1804–1810 (2020).

    [131] A. Polak-Szabela, I. Dziembowska, M. Bracha, A. Pedrycz-Wieczorska, K. Kedziora-Kornatowska et al., The analysis of oxidative stress markers may increase the accuracy of the differential diagnosis of alzheimer’s disease with and without depression. Clin. Interv. Aging 16, 1105–1117 (2021).

    [132] Q. Peng, X. Yan, X. Shi, S. Ou, H. Gu et al., In vivo monitoring of superoxide anion from alzheimer’s rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens. Bioelectron. 144, 111665 (2019).

    [133] C. Szabo, K. Modis, Pathophysiological roles of peroxynitrite in circulatory shock. Shock 34, 4–14 (2010).

    [134] F. Liu, H. Dong, Y. Tian, Real-time monitoring of peroxynitrite (ONOO−) in the rat brain by developing a ratiometric electrochemical biosensor. Analyst 144(6), 2150–2157 (2019).

    [135] J.K. Thompson, M.R. Peterson, R.D. Freeman, Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299(5609), 1070–1072 (2003).

    [136] Y. Cao, W. Ma, W. Ji, P. Yu, F. Wu et al., Electrophoretically sheathed carbon fiber microelectrodes with metal/nitrogen/carbon electrocatalyst for electrochemical monitoring of oxygen in vivo. ACS Appl. Bio Mater. 2(3), 1376–1383 (2019).

    [137] L. Zhou, X. Li, B. Su, Spatial regulation control of oxygen metabolic consumption in mouse brain. Adv. Sci. 9(34), e2204468 (2022).

    [138] K.Y. Goud, C. Moonla, R.K. Mishra, C. Yu, R. Narayan et al., Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management. ACS Sens. 4(8), 2196–2204 (2019).

    [139] P. Joshi, P.R. Riley, R. Mishra, S. Azizi Machekposhti, R. Narayan, Transdermal polymeric microneedle sensing platform for fentanyl detection in biofluid. Biosensors 12(4), 198 (2022).

    [140] M.M. Sabzehmeidani, M. Kazemzad, Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: a review. Sci. Total. Environ. 810, 151997 (2022).

    [141] M. Regiart, A. Ledo, E. Fernandes, G.A. Messina, C.M.A. Brett et al., Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in vivo in brain tissue. Biosens. Bioelectron. 199, 113874 (2022).

    [142] X. Xie, J.C. Doloff, V. Yesilyurt, A. Sadraei, J.J. McGarrigle et al., Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2(12), 894–906 (2018).

    [143] B. Liu, X. Liu, S. Shi, R. Huang, R. Su et al., Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater. 40, 100–118 (2016).

    [144] D. Chan, J.C. Chien, E. Axpe, L. Blankemeier, S.W. Baker et al., Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 34(24), e2109764 (2022).

    [145] K. Sato, T. Konno, Carbon nanotube immobilized electrode using amphiphilic phospholipid polymer with anti-fouling and dispersion property for electrochemical analysis. Electroanalysis 32(5), 898–901 (2020).

    [146] L. Fang, B. Liang, G. Yang, Y. Hu, Q. Zhu et al., A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring. Biosens. Bioelectron. 97, 196–202 (2017).

    [147] S.-Y. Yang, V. Sencadas, S.S. You, N.Z.-X. Jia, S.S. Srinivasan et al., Powering implantable and ingestible electronics. Adv. Funct. Mater. 31(44), 2009289 (2021).

    [148] X. Chen, X. Xie, Y. Liu, C. Zhao, M. Wen et al., Advances in healthcare electronics enabled by triboelectric nanogenerators. Adv. Funct. Mater. 30(43), 2004673 (2020).

    [149] L. Barelli, G. Bidini, D. Pelosi, E. Sisani, Enzymatic biofuel cells: a review on flow designs. Energies (2021).

    [150] S. El Ichi-Ribault, J.-P. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin et al., Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim. Acta 269, 360–366 (2018).

    Jin Zhou, Shenghan Zhou, Peidi Fan, Xunjia Li, Yibin Ying, Jianfeng Ping, Yuxiang Pan. Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information[J]. Nano-Micro Letters, 2024, 16(1): 049
    Download Citation