[1] LIU H, WANG C, WANG G. Photocatalytic advanced oxidation processes for water treatment: Recent advances and perspective[J]. Chem Asian J, 2020, 15(20): 3239-3253.
[2] MADHAVAN J, THEERTHAGIRI J, BALAJI D, et al. Hybrid advanced oxidation processes involving ultrasound: An overview[J]. Molecules, 2019, 24(18): 3341.
[3] WANG B, SONG Z, SUN L. A review: Comparison of multi-air-pollutant removal by advanced oxidation processes-industrial implementation for catalytic oxidation processes[J]. Chem Eng J, 2021, 409: 128136.
[4] MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review[J]. Water Res, 2018, 139: 118-131.
[5] OTURAN M A. Electrochemical advanced oxidation technologies for removal of organic pollutants from water[J]. Environ Sci Pollut R, 2014, 21(14): 8333-8335.
[6] RIBEIRO A R L, MOREIRA N F F, PUMA G L, et al. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies[J]. Chem Eng J, 2019, 363: 155-173.
[7] HONG K S, XU H, KONISHI H, et al. Direct water splitting through vibrating piezoelectric microfibers in water[J]. J Phys Chem Lett, 2010, 1(6): 997-1002.
[8] HONG K S, XU H, KONISHI H, et al. Piezo-electro-chemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers[J]. J Phys Chem C, 2012, 116(24): 13045-13051.
[9] WANG Y, WEN X, JIA Y, et al. Piezo-catalysis for nondestructive tooth whitening[J]. Nat Commun, 2020, 11(1): 1-11.
[10] FENG Y, LING L, WANG Y, et al. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis[J]. Nano Energy, 2017, 40: 481-486.
[11] TU S, GUO Y, ZHANG Y, et al. Piezocatalysis and piezo-photocatalysis: Catalysis classification and modification strategy, reaction mechanism, and practical application[J]. Adv Funct Mater, 2020, 30(48): 2005158.
[12] WU J, XU Q, LIN E, et al. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3[J]. ACS Appl Mater, 2018, 10(21): 17842-17849.
[13] FENG W, YUAN J, ZHANG L, et al. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O[J]. Appl Catal B, 2020, 277: 119250.
[14] BISWAS A, SAHA S, JANA N R. ZnSnO3 nanoparticle-based piezocatalysts for ultrasound-assisted degradation of organic pollutants[J]. ACS Appl Nano Mater, 2019, 2(2): 1120-1128.
[15] HUANG H, TU S, ZENG C, et al. Macroscopic polarization enhancement promoting photo-and piezoelectric-induced charge separation and molecular oxygen activation[J]. Angew Chem Int Ed, 2017, 56(39): 11860-11864.
[16] TU S, HUANG H, ZHANG T, et al. Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: Photocatalysis and piezoelectric-catalysis and mechanism insight[J]. Appl Catal B, 2017, 219: 550-562.
[17] WU W, WANG L, LI Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature, 2014, 514(7523): 470-474.
[18] MA W, YAO B, ZHANG W, et al. A novel multi-flaw MoS2 nanosheet piezocatalyst with superhigh degradation efficiency for ciprofloxacin[J]. Environ Sci Nano, 2018, 5(12): 2876-2887.
[19] TONG H, XU Y, CHENG X, et al. One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance[J]. Electrochim Acta, 2016, 210: 147-154.
[20] WANG Y Y, ZHOU G Q, GUO J, et al. Controllable preparation of porous ZnO microspheres with a niosome soft template and their photocatalytic properties[J]. Ceram Int, 2016, 42(10): 12467-12474.
[21] LOU X W, ARCHER L A, YANG Z. Hollow micro-/nanostructures: Synthesis and applications[J]. Adv Mater, 2008, 20(21): 3987-4019.
[22] WANG X, LI H, LI H, et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance[J]. Adv Fun Mater, 2020, 30(15): 0190302.
[23] LI Z, FAN R, HU Z, et al. Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal of Cr(VI)[J]. J Hazard Mater, 2020, 394: 122525.
[24] WANG M, LI G D, XU H Y, et al. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets[J]. ACS Appl Mater, 2013, 5(3): 1003-1008.
[25] YE L, GUO W, YANG Y, et al. Directing the architecture of various MoS2 hierarchical hollow cages through the controllable synthesis of surfactant/molybdate composite precursors[J]. Chem Mater, 2007, 19(25): 6331-6337