[1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29.
[2] BEIDAGHI M, GOGOTSI Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro- supercapacitors[J]. Energy Environ Sci, 2014, 7(3): 867-884.
[4] TIAN B Z, ZHENG X L, KEMPA T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449(7164): 885-889.
[5] BAN C M, WHITTINGHAM M S. Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods[J]. Solid State Ion, 2008, 179(27-32): 1721-1724.
[6] HOCHBAUM A I, YANG P D. Semiconductor nanowires for energy conversion[J]. Chem Rev, 2010, 110(1): 527-546.
[7] ZHOU G M, XU L, HU G W, et al. Nanowires for electrochemical energy storage[J]. Chem Rev, 2019, 119(20): 11042-11109.
[8] HU P, ZHU T, WANG X P, et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery[J]. Nano Lett, 2018, 18(3): 1758-1763.
[9] WANG X Y, WANG X Y, HUANG W G, et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays[J]. J Power Sources, 2005, 140(1): 211-215.
[10] YANG M, YOU H P, LIU K, et al. Low-temperature coprecipitation synthesis and luminescent properties of LaPO4: Ln3+ (Ln3+ = Ce3+, Tb3+) nanowires and LaPO4: Ce3+, Tb3+/LaPO4 core/shell nanowires[J]. Inorg Chem, 2010, 49(11): 4996-5002.
[11] VIVEKCHAND S R C, GUNDIAH G, GOVINDARAJ A, et al. A new method for the preparation of metal nanowires by the nebulized spray pyrolysis of precursors[J]. Adv Mater, 2004, 16(20): 1842-1845.
[12] REN W H, ZHENG Z P, LUO Y Z, et al. An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries[J]. J Mater Chem A, 2015, 3(39): 19850-19856.
[13] HSU P C, KONG D S, WANG S, et al. Electrolessly deposited electrospun metal nanowire transparent electrodes[J]. J Am Chem Soc, 2014, 136(30): 10593-10596.
[14] XIAO X L, YANG L M, ZHAO H, et al. Facile synthesis of LiCoO2 nanowires with high electrochemical performance[J]. Nano Res, 2012, 5(1): 27-32.
[15] FU Q G, LI H J, SHI X H, et al. Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst[J]. Mater Chem Phys, 2006, 100(1): 108-111.
[16] XUE C S, LI H, ZHUANG H Z, et al. Synthesis of GaN nanowires with tantalum catalyst by magnetron sputtering[J]. Rare Met Mater Eng, 2009, 38(7): 1129-1131.
[17] LI F, HE J B, ZHOU W L, et al. Synthesis of porous wires from directed assemblies of nanospheres[J]. J Am Chem Soc, 2003, 125(52): 16166-16167.
[18] BECHELANY M, ABOU CHAAYA A, FRANCES F, et al. Nanowires with controlled porosity for hydrogen production[J]. J Mater Chem A, 2013, 1(6): 2133-2138.
[19] YUAN C Z, ZHANG X G, HOU L R, et al. Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2nanowires and their application in electrochemical capacitors[J]. J Mater Chem, 2010, 20(48): 10809-10816.
[20] CHEN X, KNEZ M, BERGER A, et al. Formation of titania/silica hybrid nanowires containing linear mesocage arrays by evaporation-induced block-copolymer self-assembly and atomic layer deposition[J]. Angew Chem Int Ed, 2007, 46(36): 6829-6832.
[21] YU Q A, LV J S, LI J T, et al. ZIF-mediated anchoring of co species on N-doped CarbonNanorods as an efficient cathode catalyst for Zn-air batteries[J]. Energy Environ Materials, 2023, 6(3): e12389.
[22] JIANG Y, WU Y E, ZHANG S Y, et al. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature[J]. J Am Chem Soc, 2000, 122(49): 12383-12384.
[23] YAN M Y, WANG F C, HAN C H, et al. Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance[J]. J Am Chem Soc, 2013, 135(48): 18176-18182.
[24] CARUSO R A, SCHATTKA J H, GREINER A. Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers[J]. Adv Mater, 2001, 13(20): 1577.
[25] NIU C J, MENG J S, WANG X P, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J]. Nat Commun, 2015, 6: 7402.
[26] NI B, SHI Y A, WANG X. The sub-nanometer scale as a new focus in nanoscience[J]. Adv Mater, 2018, 30(43): 1802031.
[27] HU S, LIU H L, WANG P P, et al. Inorganic nanostructures with sizes down to 1 nm: a macromolecule analogue[J]. J Am Chem Soc, 2013, 135(30): 11115-11124.
[28] ZHANG S M, LU Q C, YU B A, et al. Polyoxometalates facilitating synthesis of subnanometer nanowires[J]. Adv Funct Mater, 2021, 31(20): 2100703.
[29] ZHANG S M, SHI H D, TANG J W, et al. Super-aligned films of sub-1 nm Bi2O3-polyoxometalate nanowires as interlayers in lithium-sulfur batteries[J]. Sci China Mater, 2021, 64(12): 2949-2957.
[30] LIU J L, LI Y Q, CHEN Z, et al. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires[J]. J Am Chem Soc, 2022, 144(50): 23191-23197.
[31] MAI L Q, YANG F, ZHAO Y L, et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance[J]. Nat Commun, 2011, 2: 381.
[32] MAI L Q, XU X, HAN C H, et al. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property[J]. Nano Lett, 2011, 11(11): 4992-4996.
[33] MAI L Q, XU L, HAN C H, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J]. Nano Lett, 2010, 10(11): 4750-4755.
[34] ZHAO Y L, XU L, MAI L Q, et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries[J]. Proc Natl Acad Sci USA, 2012, 109(48): 19569-19574.
[35] LI N C. A high-rate, high-capacity, nanostructured tin oxide electrode[J]. Electrochem Solid-State Lett, 1999, 3(7): 316.
[37] CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nat Nanotechnol, 2008, 3(1): 31-35.
[38] LEE H W, MURALIDHARAN P, RUFFO R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries[J]. Nano Lett, 2010, 10(10): 3852-3856.
[39] CAO Y L, XIAO L F, WANG W, et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Adv Mater, 2011, 23(28): 3155-3160.
[40] LIU B, LUO T, MU G Y, et al. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes[J]. ACS Nano, 2013, 7(9): 8051-8058.
[41] PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nat Energy, 2016, 1: 16039.
[42] KUNDU D P, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nat Energy, 2016, 1: 16119.
[43] WANG X P, XU X M, NIU C J, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano Lett, 2017, 17(1): 544-550.
[44] XU Y N, DENG X W, LI Q D, et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries[J]. Chem, 2019, 5(5): 1194-1209.
[45] ZHU C B, YU Y, GU L, et al. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires[J]. Angew Chem Int Ed, 2011, 50(28): 6278-6282.
[46] LI H Q, ZHAI T Y, HE P, et al. Single-crystal H2V3O8 nanowires: A competitive anode with large capacity for aqueous lithium-ion batteries[J]. J Mater Chem, 2011, 21(6): 1780-1787.
[47] ZHANG X L, CHENG F Y, YANG J G, et al. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries[J]. Nano Lett, 2013, 13(6): 2822-2825.
[48] MAI L Q, DONG F, XU X, et al. Cucumber-like V2O5/poly(3, 4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability[J]. Nano Lett, 2013, 13(2): 740-745.
[49] WEI Q L, AN Q Y, CHEN D D, et al. One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries[J]. Nano Lett, 2014, 14(2): 1042-1048.
[51] SHEN L F, UCHAKER E, ZHANG X G, et al. Hydrogenated Li4Ti5O12 Nanowire arrays for high rate lithium ion batteries[J]. Adv Mater, 2012, 24(48): 6502-6506.
[52] WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nat Nanotechnol, 2012, 7(5): 310-315.
[53] MEDURI P, PENDYALA C, KUMAR V, et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries[J]. Nano Lett, 2009, 9(2): 612-616.
[54] RADWAN A, LIU Y L, QI Y Y, et al. Cycling stability of carbon coated Na5V12O32 ultralong nanowires as a cathode material for sodium-ion batteries[J]. Mater Res Bull, 2018, 97: 24-29.
[55] JIANG Y, YANG Z Z, LI W H, et al. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries[J]. Adv Energy Mater, 2015, 5(10): 1402104.
[56] WEI Q L, JIANG Z Y, TAN S S, et al. Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage[J]. ACS Appl Mater Interfaces, 2015, 7(33): 18211-18217.
[57] CAO Y L, XIAO L F, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett, 2012, 12(7): 3783-3787.
[58] FU L J, TANG K, SONG K P, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3): 1384-1389.
[59] YAN D, YU C Y, BAI Y, et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries[J]. Chem Commun, 2015, 51(39): 8261-8264.
[60] NI J, FU S D, WU C, et al. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering[J]. Adv Energy Mater, 2016, 6(11): 1502568.
[61] JI L W, GU M, SHAO Y Y, et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage[J]. Adv Mater, 2014, 26(18): 2901-2908.
[62] XIONG X Q, LUO W, HU X L, et al. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries[J]. Sci Rep, 2015, 5: 9254.
[63] VO T N, KIM H, HUR J, et al. Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries[J]. J Mater Chem A, 2018, 6(45): 22645-22654.
[64] AN Q Y, LI Y F, YOO H D, et al. Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes[J]. Nano Energy, 2015, 18: 265-272.
[65] TANG H, XU N, PEI C Y, et al. H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery[J]. ACS Appl Mater Interfaces, 2017, 9(34): 28667-28673.
[66] HE P, QUAN Y L, XU X, et al. High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode[J]. Small, 2017, 13(47): 1702551.
[67] YU Z J, KANG Z P, HU Z Q, et al. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries[J]. Chem Commun, 2016, 52(68): 10427-10430.
[68] JAYAPRAKASH N, DAS S K, ARCHER L A. The rechargeable aluminum-ion battery[J]. Chem Commun, 2011, 47(47): 12610-12612.
[69] JIANG J L, LI H, FU T, et al. One-dimensional Cu2-xSe nanorods as the cathode material for high-performance aluminum-ion battery[J]. ACS Appl Mater Interfaces, 2018, 10(21): 17942-17949.
[70] ZHAO Y L, HAN C H, YANG J W, et al. Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries[J]. Nano Lett, 2015, 15(3): 2180-2185.
[71] CLITES M, POMERANTSEVA E. Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes[J]. Energy Storage Mater, 2018, 11: 30-37.
[72] YAN M Y, HE P, CHEN Y, et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries[J]. Adv Mater, 2018, 30(1): 1703725.
[73] PENG L L, ZHU Y E, PENG X, et al. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage[J]. Nano Lett, 2017, 17(10): 6273-6279.
[74] ZHOU L M, LIU Q, ZHANG Z H, et al. Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries[J]. Adv Mater, 2018, 30(32): 1801984.
[75] DONG J, JIANG Y L, WEI Q L, et al. Strongly coupled pyridine-V2O5·nH2O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors[J]. Small, 2019, 15(22): 1900379.
[76] LI H, PENG L, WU D B, et al. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries[J]. Adv Energy Mater, 2019, 9(10): 1802930.
[77] WANG T S, LIU Y C, LU Y X, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Mater, 2018, 15: 274-281.
[78] RAO S Q, WU R Z, ZHU Z, et al. Tellurium filled carbon nanotubes cathodes for Li-Te batteries with high capacity and long-term cyclability[J]. Nano Energy, 2023, 112: 108462.
[79] TAN S S, JIANG Y L, NI S Y, et al. Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries[J]. Natl Sci Rev, 2022, 9(11): nwac183.
[80] LI H, WU D B, WU J, et al. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Adv Mater, 2017, 29(44): 1703548.
[81] ZHOU C, HE Q, LI Z H, et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries[J]. Chem Eng J, 2020, 395: 124979.
[82] GE X S, ZHANG W H, SONG F C, et al. Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries[J]. Adv Funct Materials, 2022, 32(26): 2200429.
[83] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett, 2015, 15(4): 2740-2745.
[84] LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nat Energy, 2017, 2(5): 17035.
[85] GAO L, WU N, DENG N P, et al. Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li-ion conduction in composite polymer electrolytes[J]. Energy Environ Mater, 2023, 6(1): e12272.
[86] GAO L, LUO S B, LI J X, et al. Core-shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for high-performance all-solid-state lithium metal batteries[J]. Energy Storage Mater, 2021, 43: 266-274.
[87] DU L L, ZHANG B, DENG W, et al. Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength[J]. Adv Energy Mater, 2022, 12(24): 2200501.
[88] CHENG Y, SHU J, XU L, et al. Flexible nanowire cathode membrane with gradient interfaces and rapid electron/ion transport channels for solid-state lithium batteries[J]. Adv Energy Mater, 2021, 11(12): 2100026.
[89] MAI L Q, DONG Y J, XU L, et al. Single nanowire electrochemical devices[J]. Nano Lett, 2010, 10(10): 4273-4278.
[90] XU X, YAN M Y, TIAN X C, et al. In situ investigation of Li and Na ion transport with single nanowire electrochemical devices[J]. Nano Lett, 2015, 15(6): 3879-3884.
[91] HU P, YAN M Y, WANG X P, et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices[J]. Nano Lett, 2016, 16(3): 1523-1529.
[92] YANG W, ZHU Y X, JIA Z F, et al. Interwoven nanowire based on-chip asymmetric microsupercapacitor with high integrability, areal energy, and power density[J]. Adv Energy Mater, 2020, 10(42): 2001873.
[93] LIU Q, HAO Z M, LIAO X B, et al. Langmuir-blodgett nanowire devices for in situ probing of zinc-ion batteries[J]. Small, 2019, 15(30): e1902141.
[94] YAN M Y, WANG P Y, PAN X L, et al. Quadrupling the stored charge by extending the accessible density of states[J]. Chem, 2022, 8(9): 2410-2418.