• Nano-Micro Letters
  • Vol. 15, Issue 1, 227 (2023)
Jin Li1,†, Naiteng Wu1,†, Jian Zhang2, Hong-Hui Wu3,4,*..., Kunming Pan5, Yingxue Wang6,**, Guilong Liu1, Xianming Liu1,***, Zhenpeng Yao7,8 and Qiaobao Zhang9,****|Show fewer author(s)
Author Affiliations
  • 1College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, People’s Republic of China
  • 2New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
  • 3School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
  • 4Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 8588, USA
  • 5Henan Key Laboratory of High-Temperature Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
  • 6National Engineering Laboratory for Risk Perception and Prevention, Beijing, 100041, People’s Republic of China
  • 7Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200000, People’s Republic of China
  • 8State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200000, People’s Republic of China
  • 9State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01192-5 Cite this Article
    Jin Li, Naiteng Wu, Jian Zhang, Hong-Hui Wu, Kunming Pan, Yingxue Wang, Guilong Liu, Xianming Liu, Zhenpeng Yao, Qiaobao Zhang. Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction[J]. Nano-Micro Letters, 2023, 15(1): 227 Copy Citation Text show less
    References

    [1] J. Xiong, D. Xu, Relationship between energy consumption, economic growth and environmental pollution in China. Environ. Res. 194, 110718 (2021).

    [2] S. Ligani Fereja, P. Li, Z. Zhang, J. Guo, Z. Fang et al., W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chem. Eng. J. 432, 134274 (2022).

    [3] B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui et al., Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 31(8), 2008812 (2020).

    [4] A. Mistry, A.A. Franco, S.J. Cooper, S.A. Roberts, V. Viswanathan, How machine learning will revolutionize electrochemical sciences. ACS Energy Lett. 6(4), 1422–1431 (2021).

    [5] Y. Wu, W. Wei, R. Yu, L. Xia, X. Hong et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like mxene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32(17), 2110910 (2022).

    [6] J. Zhang, R. Cui, C. Gao, L. Bian, Y. Pu et al., Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting. Small 15(47), 1904688 (2019).

    [7] G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 1–15 (2022).

    [8] C. Pylianidis, V. Snow, H. Overweg, S. Osinga, J. Kean et al., Simulation-assisted machine learning for operational digital twins. Environ. Modell. Softw. 148, 105274 (2022).

    [9] J. Li, J. Luo, H. Chen, B. Qin, C. Yuan et al., Strong electronic metal-support interaction between Pt and stainless mesh for enhancing the hydrogen evolution reaction. Chem. Commun. 58(71), 9918–9921 (2022).

    [10] J. Li, J. Wang, Y. Liu, C. Yuan, G. Liu et al., Sodium tungsten bronze-supported Pt electrocatalysts for the high-performance hydrogen evolution reaction. Catal. Sci. Technol. 12(14), 4498–4510 (2022).

    [11] S. Anantharaj, Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. J. Mater. Chem. A 9(11), 6710–6731 (2021).

    [12] C. Walter, P.W. Menezes, M. Driess, Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chem. Sci. 12(25), 8603–8631 (2021).

    [13] T. Gu, R. Sa, L. Zhang, D.-S. Li, R. Wang, Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries. Appl. Catal. B: Environ. 296, 120360 (2021).

    [14] J. Zhang, J. Li, H. Huang, W. Chen, Y. Cui et al., Spatial relation controllable di-defects synergy boosts electrocatalytic hydrogen evolution reaction over VSe2 nanoflakes in all pH electrolytes. Small 18(47), 2204557 (2022).

    [15] J. Li, J. Zhang, J. Shen, H.-H. Wu, H. Chen et al., Self-supported electrocatalysts for hydrogen evolution reaction. Mater. Chem. Front. 7, 567–606 (2023).

    [16] Y. Zhao, S. Wei, K. Pan, Z. Dong, B. Zhang et al., Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem. Eng. J. 421, 129645 (2021).

    [17] Y. Zhao, S. Wei, L. Xia, K. Pan, B. Zhang et al., Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chem. Eng. J. 430, 133040 (2022).

    [18] C.-Y. Pei, T. Li, M. Zhang, J.-W. Wang, L. Chang et al., Synergistic effects of interface coupling and defect sites in WO3/InVO4 architectures for highly efficient nitrogen photofixation. Sep. Purif. Technol. 290, 120875 (2022).

    [19] J. Chen, M. Qin, S. Ma, R. Fan, X. Zheng et al., Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl. Catal. B-Environ. 299, 120640 (2021).

    [20] G.L.W. Hart, T. Mueller, C. Toher, S. Curtarolo, Machine learning for alloys. Nat. Rev. Mater. 6(8), 730–755 (2021).

    [21] N. Artrith, K.T. Butler, F.X. Coudert, S. Han, O. Isayev et al., Best practices in machine learning for chemistry. Nat. Chem. 13(6), 505–508 (2021).

    [22] J. Peng, D. Schwalbe-Koda, K. Akkiraju, T. Xie, L. Giordano et al., Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 7(12), 991–1009 (2022).

    [23] C.H. Chan, M. Sun, B. Huang, Application of machine learning for advanced material prediction and design. EcoMat 4(4), 12194 (2022).

    [24] P. Riley, Three pitfalls to avoid in machine learning. Nature 572(7767), 27–29 (2019).

    [25] Z.H. Zhou, Open-environment machine learning. Nat. Sci. Rev. 9(8), 123 (2022).

    [26] Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023).

    [27] T. Liu, X. Zhao, X. Liu, W. Xiao, Z. Luo et al., Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional GaPS4 by DFT and machine learning. J. Energy Chem. 81, 93–100 (2023).

    [28] R.B. Wexler, J.M.P. Martirez, A.M. Rappe, Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J. Am. Chem. Soc. 140(13), 4678–4683 (2018).

    [29] N.K. Pandit, D. Roy, S.C. Mandal, B. Pathak, Rational designing of bimetallic/trimetallic hydrogen evolution reaction catalysts using supervised machine learning. J. Phys. Chem. Lett. 13(32), 7583–7593 (2022).

    [30] A.J. Parker, G. Opletal, A.S. Barnard, Classification of platinum nanoparticle catalysts using machine learning. J. Appl. Phys. 128(1), 14301 (2020).

    [31] J. Kim, D. Kang, S. Kim, H.W. Jang, Catalyze materials science with machine learning. ACS Mater. Lett. 3(8), 1151–1171 (2021).

    [32] R. Ding, Y. Ding, H. Zhang, R. Wang, Z. Xu et al., Applying machine learning to boost the development of high-performance membrane electrode assembly for proton exchange membrane fuel cells. J. Mater. Chem. A 9(11), 6841–6850 (2021).

    [33] Y. Jia, X. Hou, Z. Wang, X. Hu, Machine learning boosts the design and discovery of nanomaterials. ACS Sustain. Chem. Eng. 9(18), 6130–6147 (2021).

    [34] J. Thiyagalingam, M. Shankar, G. Fox, T. Hey, Scientific machine learning benchmarks. Nat. Rev. Phys. 4(6), 413–420 (2022).

    [35] X. Zhang, Y. Tian, L. Chen, X. Hu, Z. Zhou, Machine learning: a new paradigm in computational electrocatalysis. J. Phys. Chem. Lett. 13(34), 7920–7930 (2022).

    [36] R. Pederson, B. Kalita, K. Burke, Machine learning and density functional theory. Nat. Rev. Phys. 4(6), 357–358 (2022).

    [37] J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger et al., Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121(16), 9816–9872 (2021).

    [38] O.A. von Lilienfeld, K.-R. Müller, A. Tkatchenko, Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4(7), 347–358 (2020).

    [39] F. Strieth-Kalthoff, F. Sandfort, M.H.S. Segler, F. Glorius, Machine learning the ropes: principles, applications and directions in synthetic chemistry. Chem. Soc. Rev. 49(17), 6154–6168 (2020).

    [40] Y. Chen, S. Wang, J. Xiong, G. Wu, J. Gao et al., Identifying facile material descriptors for charpy impact toughness in low-alloy steel via machine learning. J. Mater. Sci. Technol. 132, 213–222 (2023).

    [41] Y. Liu, O.C. Esan, Z. Pan, L. An, Machine learning for advanced energy materials. Energy and AI 3, 100049 (2021).

    [42] K. Gulati, S. Saravana Kumar, R. Sarath Kumar Boddu, K. Sarvakar, D. Kumar Sharma et al., Comparative analysis of machine learning-based classification models using sentiment classification of tweets related to covid-19 pandemic. Mater. Today: Proc. 51, 38–41 (2022).

    [43] X. Li, S. Yi, A.B. Cundy, W. Chen, Sustainable decision-making for contaminated site risk management: a decision tree model using machine learning algorithms. J. Clean Prod. 371, 133612 (2022).

    [44] Y. Lai, Z. Zhang, Z. Zhang, Y. Tan, L. Yu et al., Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis. Chem. Eng. J. 435, 135102 (2022).

    [45] M. Tamtaji, H. Gao, M.D. Hossain, P.R. Galligan, H. Wong et al., Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 10(29), 15309–15331 (2022).

    [46] Z. Xu, G. Zhu, N. Metawa, Q. Zhou, Machine learning based customer meta-combination brand equity analysis for marketing behavior evaluation. Inform. Process Manag. 59(1), 102800 (2022).

    [47] Y. Ding, L. Fan, X. Liu, Analysis of feature matrix in machine learning algorithms to predict energy consumption of public buildings. Energy Build. 249, 111208 (2021).

    [48] J. Li, L. Liu, T.D. Le, J. Liu, Accurate data-driven prediction does not mean high reproducibility. Nat. Mach. Intell. 2(1), 13–15 (2020).

    [49] M. Meuwly, Machine learning for chemical reactions. Chem. Rev. 121(16), 10218–10239 (2021).

    [50] W. Sha, Y. Li, S. Tang, J. Tian, Y. Zhao et al., Machine learning in polymer informatics. InfoMat 3(4), 353–361 (2021).

    [51] A. Bender, N. Schneider, M. Segler, W. Patrick Walters, O. Engkvist et al., Evaluation guidelines for machine learning tools in the chemical sciences. Nat. Rev. Chem. 6(6), 428–442 (2022).

    [52] C. Gao, X. Min, M. Fang, T. Tao, X. Zheng et al., Innovative materials science via machine learning. Adv. Funct. Mater. 32(1), 2108044 (2022).

    [53] V. Venkatraman, P.A. Carvalho, On the value of popular crystallographic databases for machine learning prediction of space groups. Acta Mater. 240, 118353 (2022).

    [54] R.M. Geilhufe, B. Olsthoorn, A.V. Balatsky, Shifting computational boundaries for complex organic materials. Nat. Phys. 17(2), 152–154 (2021).

    [55] Y. Iwasaki, R. Sawada, E. Saitoh, M. Ishida, Machine learning autonomous identification of magnetic alloys beyond the slater-pauling limit. Commun. Mater. 2(1), 31 (2021).

    [56] Q. Tao, P. Xu, M. Li, W. Lu, Machine learning for perovskite materials design and discovery. npj Comput. Mater. 7(1), 23 (2021).

    [57] A.S. Rosen, S.M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik et al., Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery. Matter 4(5), 1578–1597 (2021).

    [58] N. Zhang, B. Yang, K. Liu, H. Li, G. Chen et al., Machine learning in screening high performance electrocatalysts for CO2 reduction. Small Methods 5(11), 2100987 (2021).

    [59] J. Cai, X. Chu, K. Xu, H. Li, J. Wei, Machine learning-driven new material discovery. Nanoscale Adv. 2(8), 3115–3130 (2020).

    [60] A.A.B. Baloch, S.M. Alqahtani, F. Mumtaz, A.H. Muqaibel, S.N. Rashkeev et al., Extending shannon’s ionic radii database using machine learning. Phys. Rev. Mater. 5(4), 043804 (2021).

    [61] P. Nguyen, D. Loveland, J.T. Kim, P. Karande, A.M. Hiszpanski et al., Predicting energetics materials’ crystalline density from chemical structure by machine learning. J. Chem. Inf. Model 61(5), 2147–2158 (2021).

    [62] C. Backes, S. Bartus, C. Casiraghi, A. Ferrari, A.R. Kamali et al., Applications in opto-electronics: general discussion. Faraday Discuss. 227, 184–188 (2021).

    [63] K.T. Winther, M.J. Hoffmann, J.R. Boes, O. Mamun, M. Bajdich et al., Catalysis-hub.Org, an open electronic structure database for surface reactions. Sci. Data 6(1), 75 (2019).

    [64] E. Komp, N. Janulaitis, S. Valleau, Progress towards machine learning reaction rate constants. Phys. Chem. Chem. Phys. 24(5), 2692–2705 (2022).

    [65] J. Deng, J. Pan, Y.F. Zhang, S. Du, Database construction of two-dimensional charged building blocks for functional-oriented material design. Nano Lett. 23(10), 4634–4641 (2023).

    [66] A. Tropsha, K.C. Mills, A.J. Hickey, Reproducibility, sharing and progress in nanomaterial databases. Nature nanotech. 12(12), 1111–1114 (2017).

    [67] F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015).

    [68] H. Lu, X. Ma, Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020).

    [69] A. Mahmood, J.-L. Wang, Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ. Sci. 14(1), 90–105 (2021).

    [70] Y. Zhang, P.J. Thorburn, Handling missing data in near real-time environmental monitoring: a system and a review of selected methods. Future Gener. Comp. Sy. 128, 63–72 (2022).

    [71] S.K. Baduge, S. Thilakarathna, J.S. Perera, M. Arashpour, P. Sharafi et al., Artificial intelligence and smart vision for building and construction 4.0: machine and deep learning methods and applications. Automat. Constr. 141, 104440 (2022).

    [72] A. Turetskyy, J. Wessel, C. Herrmann, S. Thiede, Battery production design using multi-output machine learning models. Energy Storage Mater. 38, 93–112 (2021).

    [73] S. Guo, J. Popp, T. Bocklitz, Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat. Protoc. 16(12), 5426–5459 (2021).

    [74] W. Zhao, H. Zhang, J. Zheng, Y. Dai, L. Huang et al., A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants. Energy 223, 120026 (2021).

    [75] Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8(3), 202–215 (2023).

    [76] D. Roman, S. Saxena, V. Robu, M. Pecht, D. Flynn, Machine learning pipeline for battery state-of-health estimation. Nat. Mach. Intell. 3(5), 447–456 (2021).

    [77] B. Wang, F. Zhang, Main descriptors to correlate structures with the performances of electrocatalysts. Angew. Chem. Int. Ed. 61(4), 2111026 (2022).

    [78] M. Ducamp, F.-X. Coudert, Prediction of thermal properties of zeolites through machine learning. J. Phys. Chem. C 126(3), 1651–1660 (2022).

    [79] S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang et al., Physics-informed machine learning for composition-process-property design: shape memory alloy demonstration. Appl. Mater. Today 22, 100898 (2021).

    [80] L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye et al., A review of machine learning in building load prediction. Appl. Energy 285, 116452 (2021).

    [81] W. Li, N. Sengupta, P. Dechent, D. Howey, A. Annaswamy et al., Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. J. Power Sources 482, 228863 (2021).

    [82] D.P. Finegan, J. Zhu, X. Feng, M. Keyser, M. Ulmefors et al., The application of data-driven methods and physics-based learning for improving battery safety. Joule 5(2), 316–329 (2021).

    [83] J. Westermayr, M. Gastegger, M. Menger, S. Mai, L. Gonzalez et al., Machine learning enables long time scale molecular photodynamics simulations. Chem. Sci. 10(35), 8100–8107 (2019).

    [84] Y. Xu, D. Verma, R.P. Sheridan, A. Liaw, J. Ma et al., Deep dive into machine learning models for protein engineering. J. Chem. Inf. Model. 60(6), 2773–2790 (2020).

    [85] A. Harari, G. Katz, Automatic features generation and selection from external sources: a DBpedia use case. Inform. Sci. 582, 398–414 (2022).

    [86] J. Xiong, S.-Q. Shi, T.-Y. Zhang, Machine learning of phases and mechanical properties in complex concentrated alloys. J. Mater. Sci. Technol. 87, 133–142 (2021).

    [87] C. Janiesch, P. Zschech, K. Heinrich, Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021).

    [88] B.B. Gupta, K. Yadav, I. Razzak, K. Psannis, A. Castiglione et al., A novel approach for phishing urls detection using lexical based machine learning in a real-time environment. Comput. Commun. 175, 47–57 (2021).

    [89] D.S. Wigh, J.M. Goodman, A.A. Lapkin, A review of molecular representation in the age of machine learning. WIREs Comput. Mol. Sci. 12(5), 1603 (2022).

    [90] G.G.C. Peterson, J. Brgoch, Materials discovery through machine learning formation energy. J. Phys. Energy 3(2), 022002 (2021).

    [91] S.Y. Louis, Y. Zhao, A. Nasiri, X. Wang, Y. Song et al., Graph convolutional neural networks with global attention for improved materials property prediction. Phys. Chem. Chem. Phys. 22(32), 18141–18148 (2020).

    [92] M. Sun, T. Wu, A.W. Dougherty, M. Lam, B. Huang et al., Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 11(13), 2003796 (2021).

    [93] K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, K. Taira, Global field reconstruction from sparse sensors with voronoi tessellation-assisted deep learning. Nat. Mach. Intell. 3(11), 945–951 (2021).

    [94] H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122(16), 13478–13515 (2022).

    [95] A. Mosallanezhad, C. Wei, P. Ahmadian Koudakan, Y. Fang, S. Niu et al., Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl. Catal. B-Environ. 315, 121534 (2022).

    [96] R. Ding, Y. Chen, P. Chen, R. Wang, J. Wang et al., Machine learning-guided discovery of underlying decisive factors and new mechanisms for the design of nonprecious metal electrocatalysts. ACS Catal. 11(15), 9798–9808 (2021).

    [97] M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020).

    [98] L. Chen, X. Zhang, A. Chen, S. Yao, X. Hu et al., Targeted design of advanced electrocatalysts by machine learning. Chinese J. Catal. 43(1), 11–32 (2022).

    [99] M. Umer, S. Umer, M. Zafari, M. Ha, R. Anand et al., Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 10(12), 6679–6689 (2022).

    [100] L. Giordano, K. Akkiraju, R. Jacobs, D. Vivona, D. Morgan et al., Electronic structure-based descriptors for oxide properties and functions. Acc. Chem. Res. 55(3), 298–308 (2022).

    [101] L. Chen, Y. Tian, X. Hu, S. Yao, Z. Lu et al., A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction. Adv. Funct. Mater. 32(47), 2208418 (2022).

    [102] M.O.J. Jäger, E.V. Morooka, F. Federici Canova, L. Himanen, A.S. Foster, Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput. Mater. 4(1), 37 (2018).

    [103] S. Jiao, X. Fu, H. Huang, Descriptors for the evaluation of electrocatalytic reactions: D-band theory and beyond. Adv. Funct. Mater. 32(4), 2107651 (2021).

    [104] S. Lu, J. Cao, Y. Zhang, F. Lou, Z. Yu, Transition metal single-atom supported on PC3 monolayer for highly efficient hydrogen evolution reaction by combined density functional theory and machine learning study. Appl. Surf. Sci. 606, 154945 (2022).

    [105] C. Zou, J. Li, W.Y. Wang, Y. Zhang, D. Lin et al., Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Mater. 202, 211–221 (2021).

    [106] P.O. Dral, M. Barbatti, Molecular excited states through a machine learning lens. Nat. Rev. Chem. 5(6), 388–405 (2021).

    [107] C. Altintas, O.F. Altundal, S. Keskin, R. Yildirim, Machine learning meets with metal organic frameworks for gas storage and separation. J. Chem. Inf. Model. 61(5), 2131–2146 (2021).

    [108] A. Nandy, C. Duan, M.G. Taylor, F. Liu, A.H. Steeves et al., Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 121(16), 9927–10000 (2021).

    [109] C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan et al., Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 34(25), 2101474 (2022).

    [110] D. Lemm, G.F. von Rudorff, O.A. von Lilienfeld, Machine learning based energy-free structure predictions of molecules, transition states, and solids. Nat. Commun. 12(1), 4468 (2021).

    [111] Y. Guan, C.W. Coley, H. Wu, D. Ranasinghe, E. Heid et al., Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. Chem. Sci. 12(6), 2198–2208 (2020).

    [112] K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza et al., Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8(1), 59 (2022).

    [113] T.H. Pham, Y. Qiu, J. Zeng, L. Xie, P. Zhang, A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to covid-19 drug repurposing. Nat. Mach. Intell. 3(3), 247–257 (2021).

    [114] J. Tian, R. Xiong, W. Shen, J. Lu, F. Sun, Flexible battery state of health and state of charge estimation using partial charging data and deep learning. Energy Storage Mater. 51, 372–381 (2022).

    [115] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan et al., Deep learning in bioinformatics: introduction, application, and perspective in the big data era. Methods 166, 4–21 (2019).

    [116] Y. Ji, S. Ma, S. Lv, Y. Wang, S. Lu et al., Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl. Mater. Interfaces 13(36), 43374–43386 (2021).

    [117] H. Masood, C.Y. Toe, W.Y. Teoh, V. Sethu, R. Amal, Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 9(12), 11774–11787 (2019).

    [118] G. Pan, F. Wang, C. Shang, H.-H. Wu, G. Wu et al., Advances in machine learning- and artificial intelligence-assisted material design of steels. Int. J. Min. Met. Mater. 30, 1003–1024 (2023).

    [119] S. Manna, D. Roy, S. Das, B. Pathak, Capacity prediction of K-ion batteries: a machine learning based approach for high throughput screening of electrode materials. Mater. Adv. 3(21), 7833–7845 (2022).

    [120] T. Gao, W. Lu, Machine learning toward advanced energy storage devices and systems. iScience 24(1), 101936 (2021).

    [121] Y. Guan, D. Chaffart, G. Liu, Z. Tan, D. Zhang et al., Machine learning in solid heterogeneous catalysis: recent developments, challenges and perspectives. Chem. Eng. Sci. 248, 117224 (2022).

    [122] P.S. Rice, Z.P. Liu, P. Hu, Hydrogen coupling on platinum using artificial neural network potentials and DFT. J. Phys. Chem. Lett. 12(43), 10637–10645 (2021).

    [123] H.-H. Wu, L.-S. Dong, S.-Z. Wang, G.-L. Wu, J.-H. Gao et al., Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys. Rare Met. 42(5), 1645–1655 (2022).

    [124] F. Wang, H.-H. Wu, L. Dong, G. Pan, X. Zhou et al., Atomic-scale simulations in multi-component alloys and compounds: a review on advances in interatomic potential. J. Mater. Sci. Technol. 165, 49–65 (2023).

    [125] S. Mehrabi-Kalajahi, A.O. Moghaddam, F. Hadavimoghaddam, M.A. Varfolomeev, A.L. Zinnatullin et al., Entropy-stabilized metal oxide nanoparticles supported on reduced graphene oxide as a highly active heterogeneous catalyst for selective and solvent-free oxidation of toluene: a combined experimental and numerical investigation. J. Mater. Chem. A 10(27), 14488–14500 (2022).

    [126] Y. Zhang, T.C. Peck, G.K. Reddy, D. Banerjee, H. Jia et al., Descriptor-free design of multicomponent catalysts. ACS Catal. 12(17), 10562–10571 (2022).

    [127] K.E. McCullough, D.S. King, S.P. Chheda, M.S. Ferrandon, T.A. Goetjen et al., High-throughput experimentation, theoretical modeling, and human intuition: lessons learned in metal-organic-framework-supported catalyst design. ACS Cent. Sci. 9(2), 266–276 (2023).

    [128] A. Chen, J. Cai, Z. Wang, Y. Han, S. Ye et al., An ensemble learning classifier to discover arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction. J. Energy Chem. 78, 268–276 (2023).

    [129] Z. Yang, W. Gao, Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv. Sci. 9(12), 2106043 (2022).

    [130] Z. Xiong, Y. Cui, Z. Liu, Y. Zhao, M. Hu et al., Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 171, 109203 (2020).

    [131] D. Perez-Guaita, G. Quintas, J. Kuligowski, Discriminant analysis and feature selection in mass spectrometry imaging using constrained repeated random sampling-cross validation (corrs-cv). Anal. Chim. Acta 1097, 30–36 (2020).

    [132] S.Y. Ho, K. Phua, L. Wong, W.W. Bin Goh, Extensions of the external validation for checking learned model interpretability and generalizability. Patterns 1(8), 100129 (2020).

    [133] N.O. Dogan, U. Bozuyuk, P. Erkoc, A.C. Karacakol, A. Cingoz et al., Parameters influencing gene delivery efficiency of pegylated chitosan nanoparticles: experimental and modeling approach. Adv. NanoBiomed Res. 2(1), 2100033 (2021).

    [134] M. Karthikeyan, D.M. Mahapatra, A.S.A. Razak, A.A.M. Abahussain, B. Ethiraj et al., Machine learning aided synthesis and screening of HER catalyst: present developments and prospects. Catal. Rev. (2022).

    [135] D. Sui, M. Yao, L. Si, K. Yan, J. Shi et al., Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries. Carbon 205, 510–518 (2023).

    [136] G. Liu, T. Zhang, X. Li, J. Li, N. Wu et al., MoS2@C with S vacancies vertically anchored onV2C-MXene for efficient lithium and sodium storage. Inorg. Chem. Front. 10(5), 1587–1602 (2023).

    [137] Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022).

    [138] C. Wang, X. Wei, D. Ren, X. Wang, W. Xu, High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm. Mater. Design 213, 110326 (2022).

    [139] Z. Liu, S. Ha, Y. Liu, F. Wang, F. Tao et al., Application of Ag-based materials in high-performance lithium metal anode: a review. J. Mater. Sci. Technol. 133, 165–182 (2023).

    [140] X. Zhao, H. Qiu, Y. Shao, P. Wang, S. Yu et al., Silver nanoparticle-modified 2D MOF nanosheets for photothermally enhanced silver ion release antibacterial treatment. Acta Phys-Chim. Sin. 1, 2211043 (2023).

    [141] L. Wu, T. Guo, T. Li, Machine learning-accelerated prediction of overpotential of oxygen evolution reaction of single-atom catalysts. iScience 24(5), 102398 (2021).

    [142] M. Kim, M.Y. Ha, W.B. Jung, J. Yoon, E. Shin et al., Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments. Adv. Mater. 34(19), 2108900 (2022).

    [143] Y.L. Wu, X. Li, Y.S. Wei, Z. Fu, W. Wei et al., Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 33(12), 2006965 (2021).

    [144] Y. Xu, R. Wang, J. Wang, J. Li, T. Jiao et al., Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range. Chem. Eng. J. 417, 129233 (2021).

    [145] Y. Li, Y. Luo, Z. Zhang, Q. Yu, C. Li et al., Implanting Ru nanoclusters into N-doped graphene for efficient alkaline hydrogen evolution. Carbon 183, 362–367 (2021).

    [146] C. Li, H. Jang, S. Liu, M.G. Kim, L. Hou et al., P and Mo dual doped Ru ultrasmall nanoclusters embedded in P-doped porous carbon toward efficient hydrogen evolution reaction. Adv. Energy Mater. 12(23), 2200029 (2022).

    [147] M.O.J. Jager, Y.S. Ranawat, F.F. Canova, E.V. Morooka, A.S. Foster, Efficient machine-learning-aided screening of hydrogen adsorption on bimetallic nanoclusters. ACS Comb. Sci. 22(12), 768–781 (2020).

    [148] D.X. Zhu, K.M. Pan, Y. Wu, X.Y. Zhou, X.Y. Li et al., Improved material descriptors for bulk modulus in intermetallic compounds via machine learning. Rare Met. 42, 2396–2405 (2023).

    [149] X. Mao, L. Wang, Y. Xu, P. Wang, Y. Li et al., Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. npj Comput. Mater. 7(1), 46 (2021).

    [150] Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang et al., Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 144(5), 2171–2178 (2022).

    [151] H. Prats, K. Chan, The determination of the HOR/HER reaction mechanism from experimental kinetic data. Phys. Chem. Chem. Phys. 23(48), 27150–27158 (2021).

    [152] A. Gross, S. Sakong, Ab initio simulations of water/metal interfaces. Chem. Rev. 122(12), 10746–10776 (2022).

    [153] S.M.N. Jeghan, D. Kim, Y. Lee, M. Kim, G. Lee, Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics. Appl. Catal. B-Environ. 308, 121221 (2022).

    [154] G.H. Gu, J. Lim, C. Wan, T. Cheng, H. Pu et al., Autobifunctional mechanism of jagged Pt nanowires for hydrogen evolution kinetics via end-to-end simulation. J. Am. Chem. Soc. 143(14), 5355–5363 (2021).

    [155] H. Jin, H. Yu, H. Li, K. Davey, T. Song et al., MXene analogue: a 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem. Int. Ed. 61(27), 2203850 (2022).

    [156] R. Kronberg, H. Lappalainen, K. Laasonen, Hydrogen adsorption on defective nitrogen-doped carbon nanotubes explained via machine learning augmented DFT calculations and game-theoretic feature attributions. J. Phys. Chem. C 125(29), 15918–15933 (2021).

    [157] J. Mao, J. Miao, Y. Lu, Z. Tong, Machine learning of materials design and state prediction for lithium ion batteries. Chinese J. Chem. Eng. 37, 1–11 (2021).

    [158] H. Jin, T. Song, U. Paik, S.-Z. Qiao, Metastable two-dimensional materials for electrocatalytic energy conversions. Accounts Mater. Res. 2(7), 559–573 (2021).

    [159] Y. Ding, M. Zeng, Q. Zheng, J. Zhang, D. Xu et al., Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials. Nat. Commun. 12(1), 5886 (2021).

    [160] H.S. Kim, Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In2Se3 material for the hydrogen evolution reaction. J. Mater. Chem. A 9(19), 11553–11562 (2021).

    [161] L. Najafi, R. Oropesa-Nunez, S. Bellani, B. Martin-Garcia, L. Pasquale et al., Topochemical transformation of two-dimensional VSe2 into metallic nonlayered VO2 for water splitting reactions in acidic and alkaline media. ACS Nano 16(1), 351–367 (2021).

    [162] Y. Cui, X. Guo, J. Zhang, X. Li, X. Zhu et al., Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res. 15(1), 677–684 (2021).

    [163] S. Wu, Z. Wang, H. Zhang, J. Cai, J. Li, Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy Environ. Mater. 1, 1–7 (2022).

    [164] H. He, Y. Chen, C. Yang, L. Yang, Q. Jiang et al., Constructing 3D interweaved mxene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution. J. Energy Chem. 67, 483–491 (2022).

    [165] C. Wang, X. Wang, T. Zhang, P. Qian, T. Lookman et al., A descriptor for the design of 2D MXene hydrogen evolution reaction electrocatalysts. J. Mater. Chem. A 10(35), 18195–18205 (2022).

    [166] J. Zheng, X. Sun, C. Qiu, Y. Yan, Z. Yao et al., High-throughput screening of hydrogen evolution reaction catalysts in MXene materials. J. Phys. Chem. C 124(25), 13695–13705 (2020).

    [167] X. Sun, J. Zheng, Y. Gao, C. Qiu, Y. Yan et al., Machine-learning-accelerated screening of hydrogen evolution catalysts in Mbenes materials. Appl. Surf. Sci. 526, 146522 (2020).

    [168] X. Wang, C. Wang, S. Ci, Y. Ma, T. Liu et al., Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy. J. Mater. Chem. A 8(44), 23488–23497 (2020).

    [169] R. Liu, Z. Gong, J. Liu, J. Dong, J. Liao et al., Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 33(41), 2103533 (2021).

    [170] A. Baby, L. Trovato, C. Di Valentin, Single atom catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon 174, 772–788 (2021).

    [171] H. Choi, D.H. Kim, M.H. Han, H.-S. Oh, J. Heo et al., Prediction of the catalytic site of single-atom Ni catalyst using the hydrogen evolution reaction as a model platform. Electrochim. Acta 431, 141138 (2022).

    [172] C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao et al., Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 34(21), 2110103 (2022).

    [173] T. Jin, X. Liu, Q. Gao, H. Zhu, C. Lian et al., Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting. Chem. Eng. J. 433, 134089 (2022).

    [174] V. Fung, G. Hu, Z. Wu, D.-E. Jiang, Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene. J. Phys. Chem. C 124(36), 19571–19578 (2020).

    [175] S. Lin, H. Xu, Y. Wang, X.C. Zeng, Z. Chen, Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. J. Mater. Chem. A 8(11), 5663–5670 (2020).

    [176] M. Sun, A.W. Dougherty, B. Huang, Y. Li, C.H. Yan, Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy. Adv. Energy Mater. 10(12), 1903949 (2020).

    [177] C. Guo, T. Zhang, X. Lu, C.L. Wu, Rational design and effective control of gold-based bimetallic electrocatalyst for boosting CO2 reduction reaction: a first-principles study. Chemsuschem 14(13), 2731–2739 (2021).

    [178] H. Li, S. Xu, M. Wang, Z. Chen, F. Ji et al., Computational design of (100) alloy surfaces for the hydrogen evolution reaction. J. Mater. Chem. A 8(35), 17987–17997 (2020).

    [179] H. Liu, K. Liu, P. Zhong, J. Qi, J. Bian et al., Ultrathin Pt-Ag alloy nanotubes with regular nanopores for enhanced electrocatalytic activity. Chem. Mater. 30(21), 7744–7751 (2018).

    [180] H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng et al., Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energy Environ. Mater. 5(2), 486–514 (2022).

    [181] L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15(1), 144 (2023).

    [182] J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022).

    [183] Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14(1), 90 (2022).

    [184] Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12(1), 1369 (2021).

    [185] Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15(1), 158 (2023).

    [186] X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023).

    Jin Li, Naiteng Wu, Jian Zhang, Hong-Hui Wu, Kunming Pan, Yingxue Wang, Guilong Liu, Xianming Liu, Zhenpeng Yao, Qiaobao Zhang. Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction[J]. Nano-Micro Letters, 2023, 15(1): 227
    Download Citation