T. Pikuz1,2,3,*, A. Faenov2,3, N. Ozaki1,4, T. Matsuoka3..., B. Albertazzi1,5,6, N.J. Hartley3,7, K. Miyanishi8, K. Katagiri1, S. Matsuyama1, K. Yamauchi1, H. Habara1, Y. Inubushi1, T. Togashi9, H. Yumoto9, H. Ohashi9, Y. Tange9, T. Yabuuchi10, M. Yabashi9,10, A.N. Grum-Grzhimailo11, A. Casner12, I. Skobelev2,13, S. Makarov2, S. Pikuz2,13, G. Rigon6,14, M. Koenig1,6,14, K.A. Tanaka1,15, T. Ishikawa9,10 and R. Kodama1,3,4,8|Show fewer author(s)
Author Affiliations
1Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia3Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan4Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan5LULI - CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay6UPMC Univ Paris 06: Sorbonne Universites - F-91128 Palaiseau cedex, France7Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany8ILE, Osaka University, Suita, Osaka 565-0871, Japan9Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan10RIKEN Spring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan11Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia12Universite de Bordeaux-CNRS-CEA, CELIA (Center Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France13National Research Nuclear University MEPhI, Moscow 115409, Russia14LULI- CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay15ELI-NP/IFN-HH, Maqurele-Bucharest 077125 Romaniashow less
DOI: 10.1016/j.mre.2018.01.006
Cite this Article
T. Pikuz, A. Faenov, N. Ozaki, T. Matsuoka, B. Albertazzi, N.J. Hartley, K. Miyanishi, K. Katagiri, S. Matsuyama, K. Yamauchi, H. Habara, Y. Inubushi, T. Togashi, H. Yumoto, H. Ohashi, Y. Tange, T. Yabuuchi, M. Yabashi, A.N. Grum-Grzhimailo, A. Casner, I. Skobelev, S. Makarov, S. Pikuz, G. Rigon, M. Koenig, K.A. Tanaka, T. Ishikawa, R. Kodama. Development of new diagnostics based on LiF detector for pump-probe experiments[J]. Matter and Radiation at Extremes, 2018, 3(4): 197
Copy Citation Text
show less
Abstract
We present new diagnostics for use in optical laser pump - X-ray Free Electron Laser (XFEL) probe experiments to monitor dimensions, intensity profile and focusability of the XFEL beam and to control initial quality and homogeneity of targets to be driven by optical laser pulse. By developing X-ray imaging, based on the use of an LiF crystal detector, we were able to measure the distribution of energy inside a hard X-ray beam with unprecedented high spatial resolution (~1 mm) and across a field of view larger than some millimetres. This diagnostic can be used in situ, provides a very high dynamic range, has an extremely limited cost, and is relatively easy to be implemented in pumpprobe experiments. The proposed methods were successfully applied in pump-probe experiments at the SPring-8 Angstrom Compact free electron LAser (SACLA) XFEL facility and its potential was demonstrated for current and future High Energy Density Science experiments.