[4] DUFFNER F, KRONEMEYER N, TUBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nat Energy, 2021, 6(2): 123–134.
[5] USISKIN R, LU Y X , POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nat Rev Mater, 2021, 6(11):1020–1035
[6] YANG F, ZHANG H R, ZHOU Q, et al. Safety-enhanced polymer electrolytes for sodium batteries: Recent progress and perspectives[J].ACS Appl Mater Interfaces, 2019, 11 (19): 17109–17127.
[7] POPOVIC J, BRANDELL D, OHNO S,et al. Polymer-based hybrid battery electrolytes: Theoretical insights, recent advances and challenges[J]. J Mater Chem A, 2021, 9(10): 6050–6069.
[9] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589–589.
[10] QI X G, MA Q, LIU L L, et al. Sodium bis (fluorosulfonyl) imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries[J]. ChemElectroChem, 2016, 3(11): 1741–1745.
[11] LI Y H, LIU M, DUAN S S, et al. A high-voltage hybrid solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries[J]. ACS Appl Energy Mater,2021, 4(3): 2318–2326.
[12] ZHANG B H, LIU Y L, LIU J, et al. “Polymer-in-ceramic” based poly(epsilon-caprolactone)/ceramic composite electrolyte for all-solid-state batteries[J]. J Energy Chem, 2021, 52: 318–325.
[13] SANGELAND C, YOUNESI R, MINDEMARK J, et al. Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes[J]. Energy Storage Mater, 2019, 19: 31–38.
[14] ABUTALIB M M, RAJEH A. Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite[J]. Physica B, 2020, 578: 411796.
[15] SINGH P, SAROJ A L. Effect of ionic liquid on structural, thermal and electrical transport properties of PVA-PVP based polymer blend electrolyte membrane[J]. Phys Scripta, 2021, 96(11): 115701.
[16] MEABE L, PE?A S R, ZHANG Y, et al. Insight into the ionic transport of solid polymer electrolytes in polyether and polyester blends[J]. J Phys Chem C, 2020, 124(33): 17981–17991.
[17] YU X W, MANTHIRAM A. A review of composite polymer-ceramic electrolytes for lithium batteries[J]. Energy Storage Mater, 2021, 34:282–300.
[18] FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nat Rev Mater, 2021, 6(11): 1003–1019.
[19] LI S, ZHANG S Q, SHEN L,et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J].Adv Sci, 2020, 7(5): 1903088.
[20] PUJAR P, GUPTA B, SENGUPTA P, et al. Sodium ion incorporated alumina–A versatile anisotropic ceramic[J]. J Eur Ceram Soc, 2019,39(15): 4473–4486.
[21] YAO Y, LIU Z, WANG X, et al. Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries[J]. J Mater Sci, 2021, 56(16): 9951–9960.
[22] SUN Z J, LI Y H, ZHANG S Y, et al. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability[J]. J Mater Chem A, 2019,7(18): 11069–11076.
[23] SENTHIL R A, THEERTHAGIRI J, MADHAVAN J, et al. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode[J]. J Solid State Chem, 2016, 242: 199–206.
[24] YANG J, WANG X, ZHANG G, et al. High-performance solid composite polymer electrolyte for all solid-state lithium battery through facile microstructure regulation[J]. Front Chem, 2019, 7: 388.
[25] YI Q, ZHANG W Q, LI S Q, et al. Durable sodium battery with a flexible Na3Zr2Si2PO12-PVDF-HFP composite electrolyte and sodium/carbon cloth anode[J]. ACS Appl Mater Inter, 2018, 10(41):35039–35046.
[26] LIU X M, GARCIA-MENDEZ R, LUPINI A R, et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes[J]. Nat Mater, 2021, 20(11): 1485–1490.
[28] KUMAR D, HASHMI S A. Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting,gel polymer electrolytes dispersed with silica nanoparticles[J]. J Power Sources, 2010, 195(15): 5101–5108.
[30] WEI T, ZHANG Z H, WANG Z M, et al. Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/ succinonitrile for high-performance solid-state lithium metal batteries[J]. ACS Appl Energy Mater, 2020, 3(9): 9428–9435.