• Chinese Journal of Lasers
  • Vol. 48, Issue 6, 0602112 (2021)
Yifan Pang, Geyan Fu*, Mingyu Wang, Yanqi Gong..., Siqi Yu, Jiachao Xu and Fan Liu|Show fewer author(s)
Author Affiliations
  • Laser Manufacturing Technology Institute, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • show less
    DOI: 10.3788/CJL202148.0602112 Cite this Article Set citation alerts
    Yifan Pang, Geyan Fu, Mingyu Wang, Yanqi Gong, Siqi Yu, Jiachao Xu, Fan Liu. Parameter Optimization of High Deposition Rate Laser Cladding Based on the Response Surface Method and Genetic Neural Network Model[J]. Chinese Journal of Lasers, 2021, 48(6): 0602112 Copy Citation Text show less
    Schematic diagram of laser cladding with powder feeding
    Fig. 1. Schematic diagram of laser cladding with powder feeding
    Diagram of experimental equipment
    Fig. 2. Diagram of experimental equipment
    Schematic diagram of weld passage section
    Fig. 3. Schematic diagram of weld passage section
    Microstructure of laser cladding Fe314 with different deposition rates. (a) Sample 1; (b) sample 9
    Fig. 4. Microstructure of laser cladding Fe314 with different deposition rates. (a) Sample 1; (b) sample 9
    BBD experimental parameters and results
    Fig. 5. BBD experimental parameters and results
    Random parameter experimental parameters and results
    Fig. 6. Random parameter experimental parameters and results
    Interactive influence of process parameters on deposition rate. (a) Powder feeding velocity and power; (b) defocus and power; (c) scanning velocity and powder feeding velocity
    Fig. 7. Interactive influence of process parameters on deposition rate. (a) Powder feeding velocity and power; (b) defocus and power; (c) scanning velocity and powder feeding velocity
    Topological structure of BP neural network
    Fig. 8. Topological structure of BP neural network
    Diagrams of error iteration. (a) Evolution of genetic fitness; (b) iteration of neural network error
    Fig. 9. Diagrams of error iteration. (a) Evolution of genetic fitness; (b) iteration of neural network error
    Predicted comparison results of RSM and GA-BP models. (a) Model of RSM; (b) model of GA-BP
    Fig. 10. Predicted comparison results of RSM and GA-BP models. (a) Model of RSM; (b) model of GA-BP
    Comparison of RSM and GA-BP generalization ability
    Fig. 11. Comparison of RSM and GA-BP generalization ability
    Comparison of optimization results between RSM and GA-BP
    Fig. 12. Comparison of optimization results between RSM and GA-BP
    ElementFeCCrBSiNi
    Mass fractionBal.0.115.01.01.01.0
    Table 1. Composition of Fe314 powder unit: %
    No.P /Wvf /(g·min-1)vs /(mm·s-1)D /mmRd /(g·min-1)
    1320043.58-1027.6
    2320058.010-1149.5
    3320072.512-1257.6
    4350072.510-1066.0
    5350058.08-1244.4
    6350043.512-1136.0
    7400043.510-1242.0
    8400058.012-1055.8
    9400072.58-1168.4
    Table 2. Orthogonal experimental parameters and results
    ParameterP /Wvf /(g·min-1)vs /(mm·s-1)D /mm
    K144.935.246.849.8
    K248.849.952.551.3
    K355.464.049.848.0
    η10.528.85.73.3
    Table 3. Orthogonal experimental range analysis results
    SourceSum of squaresMean squareF valuep valueSignificance
    Model3069.27383.6645.49<0.0001Yes
    A-P414.19414.1949.11<0.0001
    B-vf2293.572293.57271.97<0.0001
    C-vs41.0741.074.870.0392
    D-D43.3243.325.140.0347
    AB36.0036.004.270.0520
    AD27.5627.563.270.0857
    BC123.21123.2114.610.0011
    SourceSum of squaresMean squareF valuep valueSignificance
    B290.3590.3510.710.0038
    Residual168.678.43
    Lack of fit143.478.971.420.3985No
    Pure error25.206.30
    Table 4. Analysis of variance of deposition rate predicted by RSM model
    Yifan Pang, Geyan Fu, Mingyu Wang, Yanqi Gong, Siqi Yu, Jiachao Xu, Fan Liu. Parameter Optimization of High Deposition Rate Laser Cladding Based on the Response Surface Method and Genetic Neural Network Model[J]. Chinese Journal of Lasers, 2021, 48(6): 0602112
    Download Citation