Yifan Pang, Geyan Fu, Mingyu Wang, Yanqi Gong, Siqi Yu, Jiachao Xu, Fan Liu. Parameter Optimization of High Deposition Rate Laser Cladding Based on the Response Surface Method and Genetic Neural Network Model[J]. Chinese Journal of Lasers, 2021, 48(6): 0602112

Search by keywords or author
- Chinese Journal of Lasers
- Vol. 48, Issue 6, 0602112 (2021)

Fig. 1. Schematic diagram of laser cladding with powder feeding

Fig. 2. Diagram of experimental equipment

Fig. 3. Schematic diagram of weld passage section

Fig. 4. Microstructure of laser cladding Fe314 with different deposition rates. (a) Sample 1; (b) sample 9

Fig. 5. BBD experimental parameters and results

Fig. 6. Random parameter experimental parameters and results

Fig. 7. Interactive influence of process parameters on deposition rate. (a) Powder feeding velocity and power; (b) defocus and power; (c) scanning velocity and powder feeding velocity

Fig. 8. Topological structure of BP neural network

Fig. 9. Diagrams of error iteration. (a) Evolution of genetic fitness; (b) iteration of neural network error

Fig. 10. Predicted comparison results of RSM and GA-BP models. (a) Model of RSM; (b) model of GA-BP

Fig. 11. Comparison of RSM and GA-BP generalization ability

Fig. 12. Comparison of optimization results between RSM and GA-BP
|
Table 1. Composition of Fe314 powder unit: %
|
Table 2. Orthogonal experimental parameters and results
|
Table 3. Orthogonal experimental range analysis results
|
Table 4. Analysis of variance of deposition rate predicted by RSM model

Set citation alerts for the article
Please enter your email address