[1] GASKA R, OSINSKY A. Self-heating in high-power AlGaN-GaN HFETs[J]. IEEE Electr Device L, 1998, 19(3): 89-91.
[3] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Phys Rev Lett, 1993, 70(24): 3764-3767.
[7] WANG W Y, THOMAS M. Large colorless HPHT synthetic gem diamonds from China[J]. Gems Gemol, 2016, 52(1): 101-102.
[8] KAMO M, SATO Y, MATSUMOTO S, et al. Diamond synthesis from gas phase in microwave plasma[J]. J Cryst Growth, 1983, 62(3): 642-644.
[9] HARRIS S J. Mechanism for diamond growth from methyl radicals[J]. Appl Phys Lett, 1990, 56(23): 2298-2300.
[10] GOODWIN D G. Scaling laws for diamond chemical vapor deposition. I. Diamond surface chemistry[J]. J Appl Phys, 1993, 74(11): 6888-6894.
[11] HARRIS S J, GOODWIN D G. Growth on the reconstructed diamond (100) surface[J]. J Phys Chem, 1993, 97(1): 23-28.
[12] BACHMANN P K, MESSIER R. Emerging technology of diamond thin films[J]. Chem Eng News, 1989, 67(20): 24-38.
[13] GROTJOHN T, LISKE R, HASSOUNI K, et al. Scaling behavior of microwave reactors and discharge size for diamond deposition[J]. Diam Relat Mater, 2005, 14(3-7): 288-291.
[14] GAUDREAU M P J, SMITH D K. Microwave plasma generator[P]. US Patent, 4866346. 1989-9-12.
[15] FNER M, WILD C, KOIDL P. Simulation and development of optimized microwave plasma reactors for diamond deposition[J]. Surf Coat Tech, 1999, 116-119: 853-862.
[16] BESEN M M, SEVILLANO E, SMITH D K. Microwave plasma reactor[P]. US Patent, 5501740. 1996-3-26.
[17] BESEN M M, SEVILLANO E, SMITH D K. Microwave plasma reactor[P]. US Patent, 5556475. 1996-9-17.
[18] LI X J, TANG W Z, YU S W, et al. Design of novel plasma reactor for diamond film deposition[J]. Diam Relat Mater, 2011, 20(4): 480-484.
[19] SU J, LI Y, LI X, et al. A novel microwave plasma reactor with a unique structure for chemical vapor deposition of diamond films[J]. Diam Relat Mater, 2014, 42(2): 28-32.
[20] LI Y F, SU J J, LIU Y Q, et al. Design of a new TM021 mode cavity type MPCVD reactor for diamond film deposition[J]. Diam Relat Mater, 2014, 44: 88-94.
[21] FNER M, WILD C, KOIDL P. Novel microwave plasma reactor for diamond synthesis[J]. Appl Phys Lett, 1998, 72(10): 1149-1151.
[22] LI Y F, SU J J, LIU Y Q, et al. A circumferential antenna ellipsoidal cavity type MPCVD reactor developed for diamond film deposition[J]. Diam Relat Mater, 2015, 51: 24-29.
[23] PLEULER E, WILD C, FNER M, et al. The CAP-reactor, a novel microwave CVD system for diamond deposition[J]. Diam Relat Mater, 2002, 11(3-6): 467-471.
[24] SU J J, LI Y F, DING M H, et al. A dome-shaped cavity type microwave plasma chemical vapor deposition reactor for diamond films deposition[J]. Vacuum, 2014, 107: 51-55.
[25] WENG J, XIONG L W, WANG J H, et al. Investigation of depositing large area uniform diamond films in multi-mode MPCVD chamber[J]. Diam Relat Mater, 2012, 30: 15-19.
[26] FNER M, WILD C, KOIDL P. Numerical simulations of microwave plasma reactors for diamond CVD[J]. Surf Coat Tech, 1995, 74(1-3): 221-226.
[27] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Modeling and numerical analyses of microwave plasmas for optimizations of a reactor design and its operating conditions[J]. Diam Relat Mater, 2005, 14(11/12): 1776-1779.
[28] LI Y F, AN X M, LIU X C, et al. A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films[J]. Diam Relat Mater, 2017, 78: 67-72.
[29] BOLSHAKOV A P, RALCHENKO V G, POLSKIY A V, et al. Growth of single-crystal diamonds in microwave plasma[J]. Plasma Phys Rep, 2012, 38(13): 1113-1118.
[30] BUSHUEV E V, YUROV V Y, BOLSHAKOV A P, et al. Express in situ measurement of epitaxial CVD diamond film growth kinetics[J]. Diam Relat Mater, 2012, 72: 61-70.
[31] BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities[J]. Diam Relat Mater, 2019, 97: 107466.
[32] BOLSHAKOV A P, RALCHENKO V G, SHU G Y, et al. Single crystal diamond growth by MPCVD at subatmospheric pressures[J]. Mater Today Commun, 2020, 25: 101635.
[33] CHAYAHARA A, MOKUNO Y, HORINO Y, et al. The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD[J]. Diam Relat Mater, 2004, 13: 1954-1958.
[34] MOKUNO Y, CHAYAHARA A, SODA Y, et al. Synthesizing single- crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J]. Diam Relat Mater, 2005, 14: 1743-1746.
[35] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Simulation with an improved plasma model utilized to design a new structure of microwave plasma discharge for chemical vapor deposition of diamond crystals[J]. Diam Relat Mater, 2008, 17: 494-497.
[36] MOKUNO Y, CHAYAHARA A, YAMADA H, et al. Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation[J]. Diam Relat Mater, 2009, 18: 1258-1261.
[37] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond[J]. Diam Relat Mater, 2013, 33: 27-31.
[38] KUO K P, ASMUSSEN J. An experimental study of high pressure synthesis of diamond films using a microwave cavity plasma reactor[J]. Diam Relat Mater, 1997, 6: 1097-1105.
[39] ASMUSSEN J, GROTJOHN T A, SCHUELKE T, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis[J]. Appl Phys Lett, 2008, 93: 031502.
[40] HEMAWAAN K W, GROTJOHN T A, REINHARD D K, et al. Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density[J]. Diam Relat Mater, 2010, 19: 1446-1452.
[41] GU Y J, LU J, GROTJOHN T, et al. Microwave plasma reactor design for high pressure and high power density diamond synthesis[J]. Diam Relat Mater, 2012, 24: 210-214.
[42] GICQUEL A, HASSOUNI K, FARHAAT S, et al. Spectroscopic analysis and chemical kinetics modeling of a diamond deposition plasma reactor[J]. Diam Relat Mater, 1994, 3: 581-586.
[43] LOMBARDI G, HASSOUNI K, STANCU G D, et al. Study of an H2/CH4 moderate pressure microwave plasma used for diamond deposition: Modelling and IR tuneable diode laser diagnostic[J]. Plasma Sources Sci T, 2005, 14: 440-450.
[44] SILVA F, HASSOUNI K, BONNIN X, et al. Microwave engineering of plasma-assisted CVD reactors for diamond deposition[J]. J Phys Condens Matt, 2009, 21: 364202.
[45] GRAEBNER J E, JIN S, KAMMLOTT G W, et al. Unusually high thermal conductivity in diamond films[J]. Appl Phys Lett, 1992, 60(13): 1576-1578.
[46] WARD A, BROIDO D, STEWART D, et al. Ab initio theory of the lattice thermal conductivity in diamond[J]. Phys Rev B, 2009, 80(12): 125203-125203.
[47] RALCHENKO V G, INYUSHKIN A V, SHU G Y, et al. Thermal conductivity of diamond mosaic crystals grown by chemical vapor deposition: Thermal resistance of junctions[J]. Phys Rev Appl, 2021, 13(16): 014049
[48] DUSSAIGNE A, MALINVERNI M, D MARTIN, et al. GaN grown on (111) single crystal diamond substrate by molecular beam epitaxy[J]. J Cryst Growth, 2009, 311(21): 4539-4542.
[49] DUSSAIGNE A, GONSCHOREK M, MALINVERNI M, et al. High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate[J]. Jap J Appl Phys, 2010, 49(6): 1212-1219.
[50] ALOMARI M, DUSSAIGNE A, MARTIN D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond[J]. Electron Lett, 2010, 46(4): 299-301.
[51] HIRAMA K, TANIYASU Y, KASU M. AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy[J]. Appl Phys Lett, 2011, 98(16): 1214.
[52] HIRAMA K, KASU M, TANIYASU Y. RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond[J]. IEEE Electron Dev Lett, 2012, 33(4): 513-515.
[53] SCHUSTER F, FURTMAYR F, ZAMANI R, et al. Self-assembled GaN nanowires on diamond[J]. Nano Lett, 2012, 12(5): 2199-2204.
[54] HETZL M, SCHUSTER F, WINNERL A, et al. GaN nanowires on diamond[J]. Mater Sci Semicon Proc, 2016, 48: 65-78.
[55] PANTLE F, BECKER F, KRAUT M, et al. Selective area growth of GaN nanowires and nanofins by molecular beam epitaxy on heteroepitaxial diamond (001) substrates[J]. Nanoscale Adv, 2021, 3(13): 3835-3845.
[56] TUCKERMAN D B, PEASE R. High-performance heat sinking for VLSI[J]. IEEE Electron Dev Lett, 1981, 2(5): 126-129.
[57] SHINODA M, GATTASS R R, MAZUR E. Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces[J]. J Appl Phys, 2009, 105(5): 53102.
[58] SU S, LI J, LEE G C B, et al. Femtosecond laser-induced microstructures on diamond for microfluidic sensing device applications[J]. Appl Phys Lett, 2013, 102(23): 231913.
[59] JEDRKIEWICZ O, KUMAR S, SOTILLO B, et al. Pulsed Bessel beam-induced microchannels on a diamond surface for versatile microfluidic and sensing applications[J]. Opt Mater Express, 2017, 7(6): 1962.
[60] MLLER R, SCHMID P, MUNDING A, et al. Elements for surface microfluidics in diamond[J]. Diam Relat Mater, 2004, 13(4-8): 780-784.
[61] FU J, ZHU T F, ZHANG M H, et al. Fabrication of single crystal diamond microchannels for microelectromechanical systems[J]. Diam Relat Mater, 2017, 80: 64-68.
[62] FU J, LIU Z, ZHU T, et al. Fabrication of microchannels in single crystal diamond for microfluidic systems[J]. Microfluid Nanofluid, 2018, 22(9): 92.
[64] FANG X Y, CUI J L, FAN Z J, et al. Study on micromachining of polycrystalline diamond by UV nanosecond laser[J]. Integr Ferroelectr, 2021, 219(1): 28-38.
[65] CUI J L, FANG X Y, DONG X Y, et al. Fabrication of PCD skiving cutter by UV nanosecond laser[J]. Materials, 2021, 14(14): 4027.
[66] ULLAH N, CUI J, FAN Z, et al. Ablation threshold measurement and chemical modification of UV nanosecond laser micromachining of polycrystalline diamond[J]. Phys Status Solidi, 2021, 218(24): 2100450.
[67] DOU J, CUI J, FANG X, et al. Theoretical and experimental study on machining rectangular microgroove of diamond by femtosecond laser[J]. Integr Ferroelectr, 2020, 208(1): 104-116.
[68] DOU J, SUN Y, XU M, et al. Process research on micro-machining diamond microgroove by femtosecond laser[J]. Integr Ferroelectr, 2019, 198(1): 9-19.
[69] SUN Y, DOU J, XU M, et al. Research on the mechanism of micromachining of CVD diamond by femtosecond laser[J]. Ferroelectrics, 2019, 549(1): 266-275.
[70] YANG Q, ZHAO J, HUANG Y, et al. A diamond made microchannel heat sink for high-density heat flux dissipation[J]. Appl Therm Eng, 2019, 158: 113804.
[71] YANG Q, MIAO J, ZHAO J, et al. Flow boiling of ammonia in a diamond-made microchannel heat sink for high heat flux hotspots[J]. J Therm Sci, 2020, 29(5): 1333-1344.
[72] CHU K K, CHAO P C, DIAZ J A, et al. S2-T4: Low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]//Lester Eastman Conference on High Performance Devices, IEEE, 2014.
[73] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE T Electron Dev, 2015, 62(11): 3658-3664.
[74] CHU K, CHAO P C, CREAMER C. Method for gallium nitride on diamond semiconductor wafer production[P]. US Patent, 14/800387. 2019-2-7.
[75] CHAO P C, CHU K, DIAZ J, et al. GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. MRS Adv, 2016, 1(2): 147-155.
[76] MU F, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Mater, 2018, 150: 148-151.
[77] MU F, SUGA T. Room temperature GaN bonding by surface activated bonding methods[C]//19th International Conference on Electronic Packaging Technology, Shanghai, China, 2018: 1-4.
[78] MINOURA Y, OHKI T, OKAMOTO N, et al. Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs[J]. Jap J Appl Phys, 2019, 59: SGGD03.
[79] LI C M, ZHU R H, LIU J L, et al. Effect of arc characteristics on the properties of large size diamond wafer prepared by DC arc plasma jet CVD[J]. Diam Relat Mater, 2013, 39(39): 47-52.
[81] LIU T, KONG Y, WU L, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Dev Lett, 2017, 38(10): 1417-1420.
[83] RANTAMAKI A, LINDFORS J, SILVENNOINEN M, et al. Low temperature gold-to-gold bonded semiconductor disk laser[J]. IEEE Photon Technol Lett, 2013, 25(11): 1062-1065.
[84] JAGANNADHAM K. Multilayer diamond heat spreaders for electronic power devices[J]. Solid-State Electron, 1998, 42(12): 2199-2208.
[85] CALAME J P, MYERS R E, WOOD F N, et al. Simulations of direct-die-attached microchannel coolers for the thermal management of GaN-on-SiC microwave amplifiers[J]. IEEE T Compon Pack T, 2005, 28(4): 797-809.
[86] SHEIKHI, HUO Y, TSAI C H, et al. Prior-to-bond annealing effects on the diamond-to-copper heterogeneous integration using silver- indium multilayer structure[J]. J Mater Sci Mater Electron, 2020, 31(4): 8059-8071.
[87] HAN Y, LAU B L, ZHANG X, et al. Enhancement of hotspot cooling with diamond heat spreader on Cu microchannel heat sink for GaN-on-Si device[J]. IEEE T Comp Pack Man, 2014, 4(6): 983-990.
[88] WARZOHA R J, BOTELER L, SMITH A N, et al. Steady-state measurements of thermal transport across highly conductive interfaces[J]. Int J Heat Mass Transf, 2019, 130: 874-881.
[89] LIANG J, OHNO Y, YAMASHITA Y, et al. Characterization of nanoscopic Cu/diamond interfaces prepared by surface activated bonding: Implications for thermal management[J]. ACS Appl Nano Mater, 2020, 3(3): 2455-2462.
[90] FU S, MEI Y, LU G Q, et al. Pressureless sintering of nanosilver paste at low temperature to join large area (≥100 mm2) power chips for electronic packaging[J]. Mater Lett, 2014, 128: 42-45.
[91] WANG T, CHEN X, LU G Q, et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. J Electron Mater, 2007, 36(10): 1333-1340.
[92] LI Y, JING H, HAN Y, et al. Microstructure and joint properties of nano-silver paste by ultrasonic-assisted pressureless sintering[J]. J Electron Mater, 2016, 45(6): 3003-3012.
[93] SEELMANN-EGGEBERT M, MEISEN P, SCHAUDEL F, et al. Heat-spreading diamond films for GaN-based high-power transistor devices[J]. Diam Relat Mater, 2001, 10(3): 744-749.
[94] ALOMARI M, DIPALO M, ROSSI S, et al. Diamond overgrown InAlN/GaN HEMT[J]. Diam Relat Mater, 2011, 20(4): 604-608.
[95] MEYER D J, FEYGELSON T I, ANDERSON T J, et al. Large-signal RF performance of nanocrystalline diamond coated AlGaN/GaN high electron mobility transistors[J]. IEEE Electron Dev Lett, 2014, 35(10): 1013-1015.
[96] TADJER M J, ANDERSON T J, FEYGELSON T I, et al. Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process[J]. Phys Status Solidi, 2016, 213(4): 893-897.
[97] FRANCIS D, FAILI F, BABIC D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates[J]. Diam Relat Mater, 2010, 19(2/3): 229-233.
[98] CHAO P C, CHU K, CREAMER C. A new high power GaN-on- diamond HEMT with low-temperature bonded substrate technology [C]//CS Mantech Conference, New Orleans, Louisiana, 2013.
[99] YAN Z, RAMANETI R, ANAYA J, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs[J]. Appl Phys Lett, 2017, 111(4): 287-305.