• Advanced Photonics Nexus
  • Vol. 3, Issue 1, 016009 (2024)
Liu He1, Zhihao Lan2,*, Bin Yang3, Jianquan Yao1..., Qun Ren4,5, Jian Wei You5, Wei E. I. Sha6, Yuting Yang3,* and Liang Wu1,*|Show fewer author(s)
Author Affiliations
  • 1Tianjin University, Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology Tianjin, China
  • 2University College London, Department of Electronic and Electrical Engineering, London, United Kingdom
  • 3University of Mining and Technology, School of Materials Science and Physics, Xuzhou, China
  • 4Tianjin University, School of Electrical and Information Engineering, Tianjin, China
  • 5Southeast University, School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Nanjing, China
  • 6Zhejiang University, College of Information Science and Electronic Engineering, Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, Hangzhou, China
  • show less
    DOI: 10.1117/1.APN.3.1.016009 Cite this Article Set citation alerts
    Liu He, Zhihao Lan, Bin Yang, Jianquan Yao, Qun Ren, Jian Wei You, Wei E. I. Sha, Yuting Yang, Liang Wu, "Experimental observation of topological large-area pseudo-spin-momentum-locking waveguide states with exceptional robustness," Adv. Photon. Nexus 3, 016009 (2024) Copy Citation Text show less
    References

    [1] F. D. M. Haldane. Nobel lecture: topological quantum matter. Rev. Mod. Phys., 89, 040502(2017).

    [2] O. Breunig, Y. Ando. Opportunities in topological insulator devices. Nat. Rev. Phys., 4, 184-193(2022).

    [3] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763-773(2017).

    [4] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [5] G. J. Tang et al. Topological photonic crystals: physics, designs, and applications. Laser Photonics Rev., 16, 2100300(2022).

    [6] Z. Lan et al. A brief review of topological photonics in one, two, and three dimensions. Rev. Phys., 9, 100076(2022).

    [7] J. W. You et al. Topological metasurface: from passive toward active and beyond. Photonics Res., 11, B65-B102(2023).

    [8] X. Zhang et al. A second wave of topological phenomena in photonics and acoustics. Nature, 618, 687-697(2023).

    [9] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [10] Z. Wang et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [11] Z. Wang et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [12] Y. Poo et al. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett., 106, 093903(2011).

    [13] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [14] L. H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [15] C. He et al. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl. Acad. Sci. U. S. A., 113, 4924-4928(2016).

    [16] Y. Yang et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett., 120, 217401(2018).

    [17] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [18] X. D. Chen et al. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Phys. Rev. B, 96, 020202(R)(2017).

    [19] F. Gao et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys., 14, 140-144(2018).

    [20] X. T. He et al. A silicon-on insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [21] L. Zhang et al. Valley kink states and topological channel intersections in substrate-integrated photonic circuitry. Laser Photonics Rev., 13, 1900159(2019).

    [22] Y. Yang et al. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446(2020).

    [23] H. Xue, Y. Yang, B. Zhang. Topological valley photonics: physics and device applications. Adv. Photonics Res., 2, 2100013(2021).

    [24] J. W. Liu et al. Valley photonic crystals. Adv. Phys. X, 6, 1905546(2021).

    [25] X. D. Chen et al. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett., 122, 233902(2019).

    [26] B. Y. Xie et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett., 122, 233903(2019).

    [27] M. Hafezi et al. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [28] X. Cheng et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542-548(2016).

    [29] J. W. You et al. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 5468(2021).

    [30] S. Barik et al. A topological quantum optics interface. Science, 359, 666-668(2018).

    [31] S. Mittal, E. A. Goldschmidt, M. Hafezi. A topological source of quantum light. Nature, 561, 502-506(2018).

    [32] B. Bahari et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science, 358, 636-640(2017).

    [33] M. A. Bandres et al. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [34] Y. Zeng et al. Electrically pumped topological laser with valley edge modes. Nature, 578, 246-250(2020).

    [35] P. Zhou et al. Observation of photonic antichiral edge states. Phys. Rev. Lett., 125, 263603(2020).

    [36] X. Xi et al. Topological antichiral surface states in a magnetic Weyl photonic crystal. Nat. Commun., 14, 1991(2023).

    [37] J. W. Liu et al. Antichiral surface states in time-reversal-invariant photonic semimetals. Nat. Commun., 14, 2027(2023).

    [38] Y. T. Yang et al. Observation of antichiral edge states in a circuit lattice. Sci. China-Phys. Mech. Astron., 64, 257011(2021).

    [39] M. Wang et al. Topological one-way large-area waveguide states in magnetic photonic crystals. Phys. Rev. Lett., 126, 067401(2021).

    [40] Q. Chen et al. Photonic topological valley-locked waveguides. ACS Photonics, 8, 1400-1406(2021).

    [41] S. Yan et al. Transport of a topologically protected photonic waveguide on-chip. Photonics Res., 11, 1021-1028(2023).

    [42] M. Wang et al. Valley-locked waveguide transport in acoustic heterostructures. Nat. Commun., 11, 3000(2020).

    [43] J. Q. Wang et al. Extended topological valley-locked surface acoustic waves. Nat. Commun., 13, 1324(2022).

    [44] S. Yin et al. Acoustic valley-locked waveguides in heterostructures of a square lattice. Phys. Rev. Appl., 18, 054073(2022).

    [45] Z. Hu et al. Manipulating the optical beam width in topological pseudospin-dependent waveguides using all-dielectric photonic crystals. Opt. Lett., 47, 5377-5380(2022).

    [46] Z. Lan et al. Large-area quantum-spin-Hall waveguide states in a three-layer topological photonic crystal heterostructure. Phys. Rev. A, 107, L041501(2023).

    [47] X. Yu et al. Topological large-area one-way transmission in pseudospin-field-dependent waveguides using magneto-optical photonic crystals. Photonics Res., 11, 1105-1112(2023).

    [48] R. Chaunsali et al. Subwavelength and directional control of flexural waves in zone-folding induced topological plates. Phys. Rev. B, 97, 054307(2018).

    [49] T.-W. Liu et al. Nonconventional topological band properties and gapless helical edge states in elastic phononic waveguides with Kekule distortion. Phys. Rev. B, 100, 214110(2019).

    [50] T.-W. Liu et al. Synthetic Kramers pair in phononic elastic plates and helical edge states on a dislocation interface. Adv. Mater., 33, 2005160(2021).

    [51] L. He et al. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt. Express, 28, 34015-34023(2020).

    [52] Y. Yang, Z. H. Hang. Topological whispering gallery modes in two-dimensional photonic crystal cavities. Opt. Express, 26, 21235-21241(2018).

    [53] Q. Chen et al. Valley-Hall photonic topological insulators with dual-band kink states. Adv. Opt. Mater., 7, 1900036(2019).

    [54] X. Wang et al. Design of wavelength division multiplexing devices based on tunable edge states of valley photonic crystals. Opt. Express, 31, 13933-13942(2023).

    [55] Y. Ruan et al. Applications for wavelength division multiplexers based on topological photonic crystals. Photonics Res., 11, 569-574(2023).

    [56] M. L. N. Chen et al. Coexistence of pseudospin- and valley-Hall-like edge states in a photonic crystal with C3v symmetry. Phys. Rev. Res., 2, 043148(2020).

    [57] G. Wei et al. Coexisting valley and pseudo-spin topological edge states in photonic topological insulators made of distorted Kekule lattices. Photonics Res., 10, 999-1010(2022).

    Liu He, Zhihao Lan, Bin Yang, Jianquan Yao, Qun Ren, Jian Wei You, Wei E. I. Sha, Yuting Yang, Liang Wu, "Experimental observation of topological large-area pseudo-spin-momentum-locking waveguide states with exceptional robustness," Adv. Photon. Nexus 3, 016009 (2024)
    Download Citation