• Chinese Journal of Lasers
  • Vol. 46, Issue 7, 0701009 (2019)
Shaoping Shi1、2, Wenhai Yang3, Yaohui Zheng1、2, and Yajun Wang1、2、*
Author Affiliations
  • 1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 3 China Academy of Space Technology (Xi'an), Xi'an, Shaanxi 710100, China
  • show less
    DOI: 10.3788/CJL201946.0701009 Cite this Article Set citation alerts
    Shaoping Shi, Wenhai Yang, Yaohui Zheng, Yajun Wang. Noise Analysis of Single-Frequency Laser Source in Preparation of Squeezed-State Light Field[J]. Chinese Journal of Lasers, 2019, 46(7): 0701009 Copy Citation Text show less
    References

    [1] Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 356, 1140-1144(2017). http://europepmc.org/abstract/MED/28619937

    [2] Huo M R, Qin J L, Sun Y R et al. Generation of intensity difference squeezed state of light at optical fiber communication wavelength[J]. Journal of Quantum Optics, 24, 134-140(2018).

    [3] Bai S, Wang J Y, Qiang J et al. Predictive filtering-based fast reacquisition approach for space-borne acquisition, tracking, and pointing systems[J]. Optics Express, 22, 26462-26475(2014). http://europepmc.org/abstract/med/25401798

    [4] Lin Y, Zhou Z Y, Wang R W. Opto-heterodyne measurement of thickness of coated films[J]. Chinese Journal of Lasers, 15, 652-655(1988).

    [5] Song S Y, Li Z L, Gao Y H et al. Swept source optical coherence tomography system for transdermal drug delivery imaging by microneedles[J]. Chinese Journal of Lasers, 45, 0807001(2018).

    [6] Chen H F, Sun Y Q, Wang Y W et al. High-precision laser tracking measurement method and experimental study[J]. Chinese Journal of Lasers, 45, 0104003(2018).

    [7] Ji N K, Zhang F M, Qu X H et al. Ranging technology for frequency modulated continuous wave laser based on phase difference frequency measurement[J]. Chinese Journal of Lasers, 45, 1104002(2018).

    [8] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016). http://www.ncbi.nlm.nih.gov/pubmed/26918975

    [9] Horrom T, Singh R, Dowling J P et al. Quantum-enhanced magnetometer with low-frequency squeezing[J]. Physical Review A, 86, 023803(2012). http://arxiv.org/abs/1202.3831

    [10] Taylor M A, Janousek J, Daria V et al. Biological measurement beyond the quantum limit[J]. Nature Photonics, 7, 229-233(2013). http://meetings.aps.org/Meeting/DAMOP13/Session/J6.7

    [11] Dwyer S E. Quantum noise reduction using squeezed states in LIGO Cambridge, Massachusetts,[D]. USA: Massachusetts Institute of Technology(2013).

    [12] Goda K. McKenzie K, Mikhailov E E, et al. Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator[J]. Physical Review A, 72, 043819(2005).

    [13] Yuen H P. Chan V W S. Noise in homodyne and heterodyne detection[J]. Optics Letters, 8, 177-179(1983).

    [14] Villar A S. The conversion of phase to amplitude fluctuations of a light beam by an optical cavity[J]. American Journal of Physics, 76, 922-929(2008). http://scitation.aip.org/content/aapt/journal/ajp/76/10/10.1119/1.2937903

    [15] Yang W H, Wang Y J, Li Z X et al. Compact and low-noise intracavity frequency-doubled single-frequency Nd∶YAP/KTP laser[J]. Chinese Journal of Lasers, 41, 0502002(2014).

    [16] Wang Y J, Zheng Y H, Shi Z et al. High-power single-frequency Nd∶YVO4 green laser by self-compensation of astigmatisms[J]. Laser Physics Letters, 9, 506-510(2012). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012LaPhL...9..506W&db_key=PHY&link_type=ABSTRACT&high=24701

    [17] Yang C S, Guan X C, Zhao Q L et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser[J]. Optics Express, 25, 13324-13331(2017).

    [18] Zhao Q L, Zhou K J, Wu Z S et al. Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser[J]. Optics Letters, 43, 42-45(2018). http://www.ncbi.nlm.nih.gov/pubmed/29328192

    [19] Koyama F, Uenohara H. Noise suppression and optical ASE modulation in saturated semiconductor optical amplifiers. [C]∥Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004., November 7-10, 2004, Pacific Grove, CA, USA. New York: IEEE, 98-102(2004).

    [20] Yamada M. Analysis of intensity and frequency noises in semiconductor optical amplifier[J]. IEEE Journal of Quantum Electronics, 48, 980-990(2012). http://ieeexplore.ieee.org/document/6194257/

    [21] Li Z X, Ma W G, Yang W H et al. Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation[J]. Optics Letters, 41, 3331-3334(2016). http://www.ncbi.nlm.nih.gov/pubmed/27420528

    [22] Zhang W H, Yang W H, Shi S P et al. Mode matching in preparation of squeezed field with high compressibility[J]. Chinese Journal of Lasers, 44, 1112001(2017).

    [23] Chen C Y, Li Z X, Jin X L et al. Resonant photodetector for cavity- and phase-locking of squeezed state generation[J]. Review of Scientific Instruments, 87, 103114(2016). http://scitation.aip.org/content/aip/journal/rsi/87/10/10.1063/1.4966249

    [24] Hildebrandt M, Buesche S, Wessels P et al. Brillouin scattering spectra in high-power single frequency ytterbium doped fiber amplifiers[J]. Optics Express, 16, 15970-15979(2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-20-15970

    [25] Fleyer M, Heerschap S, Cranch G A et al. Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/f ν frequency noise [J]. Optics Letters, 41, 1265-1268(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-6-1265

    [26] Danion G, Bondu F, Loas G et al. GHz bandwidth noise eater hybrid optical amplifier: design guidelines[J]. Optics Letters, 39, 4239-4242(2014). http://europepmc.org/abstract/MED/25121696

    [27] Li Z X, Yang W H, Wang Y J et al. Optimal design of single-frequency laser system for 795 nm squeezed light source[J]. Chinese Journal of Lasers, 42, 0902002(2015).

    [28] Yao L T, Feng J X, Gao Y H et al. Generation of a low-frequency squeezed states at telecommunication wavelength[J]. Acta Sinica Quantum Optica, 23, 99-104(2017).

    Shaoping Shi, Wenhai Yang, Yaohui Zheng, Yajun Wang. Noise Analysis of Single-Frequency Laser Source in Preparation of Squeezed-State Light Field[J]. Chinese Journal of Lasers, 2019, 46(7): 0701009
    Download Citation