• Opto-Electronic Science
  • Vol. 3, Issue 1, 230020 (2024)
Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, and Linbo Liu*
DOI: 10.29026/oes.2024.230020 Cite this Article
Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu. Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation[J]. Opto-Electronic Science, 2024, 3(1): 230020 Copy Citation Text show less
References

[1] LB Liu, JA Gardecki, SK Nadkarni et al. Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat Med, 17, 1010-1014(2011).

[2] XY Liu, S Chen, DY Cui et al. Spectral estimation optical coherence tomography for axial super-resolution. Opt Express, 23, 26521-26532(2015).

[3] ND Shemonski, FA South, YZ Liu et al. Computational high-resolution optical imaging of the living human retina. Nat Photonics, 9, 440-443(2015).

[4] KC Zhou, RB Qian, S Degan et al. Optical coherence refraction tomography. Nat Photonics, 13, 794-802(2019).

[5] O Liba, MD Lew, ED SoRelle et al. Speckle-modulating optical coherence tomography in living mice and humans. Nat Commun, 8, 15845(2017).

[6] JQ Kang, R Zhu, YX Sun et al. Pencil-beam scanning catheter for intracoronary optical coherence tomography. Opto-Electron Adv, 5, 200050(2022).

[7] L Ginner, A Kumar, D Fechtig et al. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography invivo. Optica, 4, 924-931(2017).

[8] TS Ralston, DL Marks, PS Carney et al. Interferometric synthetic aperture microscopy. Nat Phys, 3, 129-134(2007).

[9] D Hillmann, H Spahr, C Hain et al. Aberration-free volumetric high-speed imaging of in vivo retina. Sci Rep, 6, 35209(2016).

[10] SG Adie, BW Graf, A Ahmad et al. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc Natl Acad Sci USA, 109, 7175-7180(2012).

[11] SG Adie, ND Shemonski, BW Graf et al. Guide-star-based computational adaptive optics for broadband interferometric tomography. Appl Phys Lett, 101, 221117(2012).

[12] LF Yu, B Rao, J Zhang et al. Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Opt Express, 15, 7634-7641(2007).

[13] Y Yasuno, JI Sugisaka, Y Sando et al. Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography. Opt Express, 14, 1006-1020(2006).

[14] TS Ralston, DL Marks, F Kamalabadi et al. Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE Trans Image Process, 14, 1254-1264(2005).

[15] PD Woolliams, RA Ferguson, C Hart et al. Spatially deconvolved optical coherence tomography. Appl Opt, 49, 2014-2021(2010).

[16] GZ Liu, S Yousefi, ZW Zhi et al. Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach. Opt Express, 19, 18135-18148(2011).

[17] SA Hojjatoleslami, MRN Avanaki, AG Podoleanu. Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm. Appl Opt, 52, 5663-5670(2013).

[18] YH Liu, YM Liang, GG Mu et al. Deconvolution methods for image deblurring in optical coherence tomography. J Opt Soc Am A, 26, 72-77(2009).

[19] YZ Liu, FA South, Y Xu et al. Computational optical coherence tomography [Invited]. Biomed Opt Express, 8, 1549-1574(2017).

[20] GMP van Kempen, LJ van Vliet. Background estimation in nonlinear image restoration. J Opt Soc Am A, 17, 425-433(2000).

[21] N Dey, L Blanc‐Feraud, C Zimmer et al. Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc Res Tech, 69, 260-266(2006).

[22] V Bianco, M Paturzo, P Memmolo et al. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography. Opt Lett, 38, 619-621(2013).

[23] V Bianco, P Memmolo, M Paturzo et al. Quasi noise-free digital holography. Light Sci Appl, 5, e16142(2016).

[24] V Bianco, P Memmolo, M Leo et al. Strategies for reducing speckle noise in digital holography. Light Sci Appl, 7, 48(2018).

[25] V Anand, ML Han, J Maksimovic et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electron Sci, 1, 210006(2022).

[26] A Ozcan, A Bilenca, AE Desjardins et al. Speckle reduction in optical coherence tomography images using digital filtering. J Opt Soc Am A, 24, 1901-1910(2007).

[27] S Chen, X Ge, XY Liu et al. Understanding optical reflectance contrast for real‐time characterization of epithelial precursor lesions. Bioeng Transl Med, 4, e10137(2019).

[28] X Ge, HY Tang, XH Wang et al. Geometry-dependent spectroscopic contrast in deep tissues. iScience, 19, 965-975(2019).

[29] XH Ma, AT Wang, FH Ma et al. Speckle reduction using phase plate array and lens array. Opto-Electron Adv, 3, 190036(2020).

[30] M Bashkansky, J Reintjes. Statistics and reduction of speckle in optical coherence tomography. Opt Lett, 25, 545-547(2000).

[31] JM Schmitt, SH Xiang, KM Yung. Speckle in optical coherence tomography. J Biomed Opt, 4, 95-105(1999).

[32] M Guizar-Sicairos, ST Thurman, JR Fienup. Efficient subpixel image registration algorithms. Opt Lett, 33, 156-158(2008).

[33] P Refregier, B Javidi. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett, 20, 767-769(1995).

[34] E Bo, YM Luo, S Chen et al. Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis. Optica, 4, 701-706(2017).

[35] A Kumar, W Drexler, RA Leitgeb. Subaperture correlation based digital adaptive optics for full field optical coherence tomography. Opt Express, 21, 10850-10866(2013).

Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu. Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation[J]. Opto-Electronic Science, 2024, 3(1): 230020
Download Citation