• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1202003 (2022)
Xiangyou Li*, Ke Liu, Ran Zhou, and Wen Zhang
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.1202003 Cite this Article Set citation alerts
    Xiangyou Li, Ke Liu, Ran Zhou, Wen Zhang. Laser-Induced Breakdown Spectroscopy and Its Application[J]. Chinese Journal of Lasers, 2022, 49(12): 1202003 Copy Citation Text show less
    References

    [1] Long H Z, Wang J F, Wang M S et al. Determination of silver content in zinc anode slime by fire assay gravimetry method[J]. Nonferrous Metals Science and Engineering, 10, 76-80(2019).

    [2] Shen W X, Zhang X Q, Yang G et al. Evaluation of the uncertainty for determination of total rare earth in Lanthanum oxide by EDTA volumetric method[J]. China Inspection Body & Laboratory, 25, 37-40(2017).

    [3] Zhang J, Cheng L, Lin L et al. Gold nanoparticles-based glutathione recognition for rapid colorimetric detection of lead ion in water[J]. Food Science, 38, 202-207(2017).

    [4] Olesik J W. Elemental analysis using ICP-OES and ICP/MS[J]. Analytical Chemistry, 63, 12A-21A(1991).

    [5] Ammann A A. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool[J]. Journal of Mass Spectrometry, 42, 419-427(2007).

    [6] Smith E, Dent G[M]. Modern Raman spectroscopy—a practical approach(2004).

    [7] Jones R R, Hooper D C, Zhang L W et al. Raman techniques: fundamentals and frontiers[J]. Nanoscale Research Letters, 14, 231(2019).

    [8] Workman J Jr, Shenk J. Understanding and using the near-infrared spectrum as an analytical method[J]. Near-infrared Spectroscopy in Agriculture, 44, 1-10(2004).

    [9] Bokobza L. Near infrared spectroscopy[J]. Journal of Near Infrared Spectroscopy, 6, 3-17(1998).

    [10] Hou X D, He Y H, Jones B T. Recent advances in portable X-ray fluorescence spectrometry[J]. Applied Spectroscopy Reviews, 39, 1-25(2004).

    [11] Potts P J, Webb P C. X-ray fluorescence spectrometry[J]. Journal of Geochemical Exploration, 44, 251-296(1992).

    [12] García R, Báez A P. Atomic absorption spectrometry (AAS)[M]. Farrukh M A. Atomic absorption spectroscopy(2012).

    [13] Ferreira S L C, Bezerra M A, Santos A S et al. Atomic absorption spectrometry—a multi element technique[J]. TrAC Trends in Analytical Chemistry, 100, 1-6(2018).

    [14] Miziolek A W, Palleschi V, Schechter I. Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications[J]. Critical Reviews in Analytical Chemistry, 27, 257-290(2006).

    [15] Cremers D A, Radziemski L J[M]. Handbook of laser-induced breakdown spectroscopy(2006).

    [16] Singh J P, Almirall J R, Sabsabi M et al. Laser-induced breakdown spectroscopy (LIBS)[J]. Analytical and Bioanalytical Chemistry, 400, 3191-3192(2011).

    [17] Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community[J]. Applied Spectroscopy, 64, 335-366(2010).

    [18] Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields[J]. Applied Spectroscopy, 66, 347-419(2012).

    [19] Fortes F J, Moros J, Lucena P et al. Laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 85, 640-669(2013).

    [20] Li W T, Li X Y, Li X et al. A review of remote laser-induced breakdown spectroscopy[J]. Applied Spectroscopy Reviews, 55, 1-25(2020).

    [21] Guo K M, Chen A M, Xu W P et al. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy[J]. AIP Advances, 9, 065214(2019).

    [22] Hansen P B, Schröder S, Kubitza S et al. Modeling of time-resolved LIBS spectra obtained in Martian atmospheric conditions with a stationary plasma approach[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 178, 106115(2021).

    [23] Kumar P, Soumyashree S, Rao Epuru N et al. Determination of stark shifts and widths using time resolved laser-induced breakdown spectroscopy (LIBS) measurements[J]. Applied Spectroscopy, 74, 913-920(2020).

    [24] Hemalaxmi R, Vasa N J, Seshadri S. Understanding the mechanism of molecular carbon emissions using time-resolved LIBS during online coal characterization[C], P3_19(2020).

    [25] Wang Q Y, Chen A M, Xu W P et al. Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 21, 065504(2019).

    [26] Ghezelbash M, Majd A E, Darbani S M R et al. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method[J]. Applied Physics B, 123, 1-14(2016).

    [27] Li X F, gao Q, Han L et al. The spatial resolution of nanosecond laser-induced plasma spectroscopy in gases[J]. Journal of Analytical Atomic Spectrometry, 36, 993-998(2021).

    [28] Mal E, Junjuri R, Gundawar M K et al. Spatial characterization of ns-laser induced Tungsten plasma in air using laser induced breakdown spectroscopy[J]. Fusion Engineering and Design, 173, 112839(2021).

    [29] Aragón C, Aguilera J A. Two-dimensional spatial distribution of the time-integrated emission from laser-produced plasmas in air at atmospheric pressure[J]. Applied Spectroscopy, 51, 1632-1638(1997).

    [30] Corsi M, Cristoforetti G, Giuffrida M et al. Three-dimensional analysis of laser induced plasmas in single and double pulse configuration[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 723-735(2004).

    [31] Xiu J S, Bai X S, Negre E et al. Indirect laser-induced breakdown of transparent thin gel layer for sensitive trace element detection[J]. Applied Physics Letters, 102, 244101(2013).

    [32] Bai X S, Ma Q L, Motto-Ros V et al. Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure[J]. Journal of Applied Physics, 113, 013304(2013).

    [33] Yu J, Ma Q L, Motto-Ros V et al. Generation and expansion of laser-induced plasma as a spectroscopic emission source[J]. Frontiers of Physics, 7, 649-669(2012).

    [34] Amamou H, Bois A, Ferhat B et al. Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 75, 747-763(2002).

    [35] El Sherbini A M, El Sherbini T M, Hegazy H et al. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1573-1579(2005).

    [36] Aguilera J A, Aragón C. Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: temporal evolution of plasma parameters and self-absorption[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 784-792(2008).

    [37] Aragón C, Aguilera J A. CSigma graphs: a new approach for plasma characterization in laser-induced breakdown spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 149, 90-102(2014).

    [38] Bredice F, Borges F O, Sobral H et al. Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 1294-1303(2006).

    [39] Sun L X, Yu H B. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method[J]. Talanta, 79, 388-395(2009).

    [40] Hou J J, Zhang L, Yin W B et al. Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements[J]. Optics Express, 25, 23024-23034(2017).

    [41] Chen J Z, Ma R L, Wang J et al. Detection of the elements Mn and Ni in a steel sample by laser-induced breakdown spectroscopy[J]. Acta Photonica Sinica, 43, 1214001(2014).

    [42] Moon H Y, Herrera K K, Omenetto N et al. On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 702-713(2009).

    [43] Burger M, Skocčić M, Bukvić S. Study of self-absorption in laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 51-56(2014).

    [44] Yi R X, Guo L B, Li C M et al. Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 31, 961-967(2016).

    [45] Li J M, Guo L B, Li C M et al. Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption[J]. Optics Letters, 40, 5224-5226(2015).

    [46] Li J M, Tang Y, Hao Z Q et al. Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption[J]. Journal of Analytical Atomic Spectrometry, 32, 2189-2193(2017).

    [47] Hao Z Q, Liu L, Shen M et al. Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Optics Express, 24, 26521-26528(2016).

    [48] Zeng Q, Sirven J B, Gabriel J C P et al. Laser induced breakdown spectroscopy for plastic analysis[J]. TrAC Trends in Analytical Chemistry, 140, 116280(2021).

    [49] Fink H, Panne U, Niessner R. Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy[J]. Analytica Chimica Acta, 440, 17-25(2001).

    [50] Wang Q Q, Jander P, Fricke-Begemann C et al. Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1011-1015(2008).

    [51] Negre E, Motto-Ros V, Pelascini F et al. Classification of plastic materials by imaging laser-induced ablation plumes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 122, 132-141(2016).

    [52] Viskup R, Praher B, Linsmeyer T et al. Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 65, 935-942(2010).

    [53] Moros J, Lorenzo J A, Lucena P et al. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform[J]. Analytical Chemistry, 82, 1389-1400(2010).

    [54] Hoehse M, Mory D, Florek S et al. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1219-1227(2009).

    [55] Shameem K M M, Choudhari K S, Bankapur A et al. A hybrid LIBS-Raman system combined with chemometrics: an efficient tool for plastic identification and sorting[J]. Analytical and Bioanalytical Chemistry, 409, 3299-3308(2017).

    [56] Liu Y, Bousquet B, Baudelet M et al. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 73, 89-92(2012).

    [57] Jiang T J, Guo Z, Ma M J et al. Electrochemical laser induced breakdown spectroscopy for enhanced detection of Cd(II) without interference in rice on layer-by-layer assembly of graphene oxides[J]. Electrochimica Acta, 216, 188-195(2016).

    [58] Liu P, Wu D, Sun L Y et al. Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D co-deposition in EAST tokamak[J]. Fusion Engineering and Design, 118, 98-103(2017).

    [59] Xiao Q, Hai R, Ding H et al. In-situ analysis of the first wall by laser-induced breakdown spectroscopy in the TEXTOR tokamak: dependence on the magnetic field strength[J]. Journal of Nuclear Materials, 463, 911-914(2015).

    [60] Sun L X, Xin Y, Cong Z B et al. Online compositional analysis of molten steel by laser-induced breakdown spectroscopy[J]. Advanced Materials Research, 694/695/696/697, 1260-1266(2013).

    [61] Guirado S, Fortes F J, Laserna J J. Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system[J]. Talanta, 137, 182-188(2015).

    [62] Fortes F J, Guirado S, Metzinger A et al. A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean[J]. Journal of Analytical Atomic Spectrometry, 30, 1050-1056(2015).

    [63] Li W T, Yang X Y, Li X et al. A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 32, 1975-1979(2017).

    [64] Homma T, Kumada A, Fujii T et al. Depth profiling of surface degradation of silicone rubber composite insulators by remote laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 180, 106206(2021).

    [65] Kokkinaki O, Klini A, Polychronaki M et al. Assessing the type and quality of high voltage composite outdoor insulators by remote laser-induced breakdown spectroscopy analysis: a feasibility study[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 165, 105768(2020).

    [66] Junjuri R, Gummadi A P, Gundawar M K. Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks[J]. Optik, 204, 163946(2020).

    [67] Gaft M, Sapir-Sofer I, Modiano H et al. Laser induced breakdown spectroscopy for bulk minerals online analyses[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 1496-1503(2007).

    [68] Noll R, Fricke-Begemann C, Brunk M et al. Laser-induced breakdown spectroscopy expands into industrial applications[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 93, 41-51(2014).

    [69] Noll R, Bette H, Brysch A et al. Laser-induced breakdown spectrometry: applications for production control and quality assurance in the steel industry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 637-649(2001).

    [70] Zhang L, Ma W G, Dong L et al. Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 65, 790-796(2011).

    [71] Redoglio D A, Golinelli E, Musazzi S et al. Development of a large depth of field collection optics for on-line laser-induced breakdown spectroscopy applications[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 123, 179-183(2016).

    [72] Moench I, Sattmann R, Noll R. High-speed identification of polymers by laser-induced breakdown spectroscopy[J]. Proceedings of SPIE, 3100, 1-11(1997).

    [73] Stepputat M, Noll R. On-line detection of heavy metals and brominated flame retardants in technical polymers with laser-induced breakdown spectrometry[J]. Applied Optics, 42, 6210-6220(2003).

    [74] Yamamoto K Y, Cremers D A, Ferris M J et al. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument[J]. Applied Spectroscopy, 50, 222-233(1996).

    [75] Harmon R S, de Lucia F C, Munson C A et al. Laser-induced breakdown spectroscopy (LIBS): an emerging field-portable sensor technology for real-time chemical analysis for military, security and environmental applications[J]. Proceedings of SPIE, 5994, 59940K(2005).

    [76] Goujon J, Giakoumaki A, Piñon V et al. A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1091-1096(2008).

    [77] Sha P S, Yu S P, Nie C J et al. Portable laser-induced breakdown spectroscopy system based on ultra-small microchip laser[J]. Instrumentation Technology(2011).

    [78] Wang Y, Zhao N J, Ma M J et al. Optical structure design of portable soil heavy metal detector[J]. Optical Technique, 38, 551-554(2012).

    [79] Fang L, Zhao N J, Ma M J et al. Quantitative analysis of Pb, Cd, Cr and Cu in soil using standard addition method combined with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 3274-3280(2017).

    [80] Wormhoudt J, Iannarilli F J, Jr, Jones S et al. Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer[J]. Applied Spectroscopy, 59, 1098-1102(2005).

    [81] Pérez-Diez S, Fernández-Menéndez L J, Veneranda M et al. Chemometrics and elemental mapping by portable LIBS to identify the impact of volcanogenic and non-volcanogenic degradation sources on the mural paintings of Pompeii[J]. Analytica Chimica Acta, 1168, 338565(2021).

    [82] Rao A P, Jenkins P R, Vu D M et al. Rapid quantitative analysis of trace elements in plutonium alloys using a handheld laser-induced breakdown spectroscopy (LIBS) device coupled with chemometrics and machine learning[J]. Analytical Methods: Advancing Methods and Applications, 13, 3368-3378(2021).

    [83] Yan J J, Yang P, Zhou R et al. Classification accuracy improvement by data preprocessing in handheld laser-induced breakdown spectroscopy[J]. Analytical Methods, 11, 5177-5184(2019).

    [84] Yang X Y, Hao Z Q, shen M et al. Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy[J]. Talanta, 163, 127-131(2017).

    [85] Tian Y, Cheung H C, Zheng R E et al. Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 124, 16-24(2016).

    [86] Bae D S, Nam S H, Han S H et al. Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 113, 70-78(2015).

    [87] Alamelu D, Sarkar A, Aggarwal S K. Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution[J]. Talanta, 77, 256-261(2008).

    [88] Wal R L V, Ticich T M, West J R, Jr et al. Trace metal detection by laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 53, 1226-1236(1999).

    [89] Jijón D, Costa C. Pencil lead scratches on steel surfaces as a substrate for LIBS analysis of dissolved salts in liquids[J]. Journal of Physics: Conference Series, 274, 012077(2011).

    [90] Aguirre M A, Legnaioli S, Almodóvar F et al. Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 79/80, 88-93(2013).

    [91] Matsumoto A, Shimazu Y, Nakano H et al. Signal stability of surface-enhanced laser-induced breakdown spectroscopy for microdroplet analysis using a porous silicon substrate[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 178, 106143(2021).

    [92] Yang X Y, Li X Y, Cui Z F et al. Improving the sensitivity of surface-enhanced laser-induced breakdown spectroscopy by repeating sample preparation[J]. Frontiers in Physics, 8, 194(2020).

    [93] de Giacomo A, Koral C, Valenza G et al. Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level[J]. Analytical Chemistry, 88, 5251-5257(2016).

    [94] Abdelhamid M, Attia Y A, Abdel-Harith M. The significance of nano-shapes in nanoparticle-enhanced laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 35, 2982-2989(2020).

    [95] Tang Z Y, Liu K, Hao Z Q et al. The validity of nanoparticle enhanced molecular laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 36, 1034-1040(2021).

    [96] Peter L, Sturm V, Noll R. Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet[J]. Applied Optics, 42, 6199-6204(2003).

    [97] Jiang X, Hayden P, Costello J T et al. Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: optimization of parameters for detection of carbon and sulfur in steel[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 106-11(2014).

    [98] Sdorra W, Niemax K. Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes[J]. Microchimica Acta, 107, 319-327(1992).

    [99] Aragón C, Aguilera J A, Peñalba F. Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd∶YAG laser[J]. Applied Spectroscopy, 53, 1259-1267(1999).

    [100] Sturm V, Vrenegor J, Noll R et al. Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo[J]. Journal of Analytical Atomic Spectrometry, 19, 451-456(2004).

    [101] Rajavelu H, Vasa N J, Seshadri S. Effect of ambiance on the coal characterization using laser-induced breakdown spectroscopy (LIBS)[J]. Applied Physics A, 126, 1-10(2020).

    [102] Yu J L, Hou Z Y, Ma Y Y et al. Improvement of laser induced breakdown spectroscopy signal using gas mixture[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 174, 105992(2020).

    [103] Shen X K, Sun J, Ling H et al. Spatial confinement effects in laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 91, 081501(2007).

    [104] Wang Y, Yuan H, Fu Y T et al. Experimental and computational investigation of confined laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 126, 44-52(2016).

    [105] Popov A M, Colao F, Fantoni R. Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils[J]. Journal of Analytical Atomic Spectrometry, 25, 837(2010).

    [106] Wang Z, Hou Z Y, Lui S L et al. Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal[J]. Optics Express, 20, A1011-A1018(2012).

    [107] Su X J, Zhou W D, Qian H G. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy[J]. Optics Express, 22, 28437-28442(2014).

    [108] Zhao S Y, Gao X, Chen A M et al. Effect of spatial confinement on Pb measurements in soil by femtosecond laser-induced breakdown spectroscopy[J]. Applied Physics B, 126, 1-6(2019).

    [109] Zhang L L, Yang Y W. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining a cylindrical cavity confinement and Au-Nanoparticles action[J]. Optik, 220, 165129(2020).

    [110] Rai V N, Rai A K, Yueh F Y et al. Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field[J]. Applied Optics, 42, 2085-2093(2003).

    [111] Shen X K, Lu Y F, Gebre T et al. Optical emission in magnetically confined laser-induced breakdown spectroscopy[J]. Journal of Applied Physics, 100, 053303(2006).

    [112] Guo L B, Hu W, Zhang B Y et al. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement[J]. Optics Express, 19, 14067-14075(2011).

    [113] Hussain A, Asghar H, Iqbal T et al. Improving the spectral intensity of aluminum plasma by applied-magnetic field in laser-induced breakdown spectroscopy[J]. Optik, 251, 168220(2022).

    [114] Abbasi S A, Aziz Z, Khan T M et al. Enhancement of optical signal and characterization of palladium plasma by magnetic field-assisted laser-induced breakdown spectroscopy[J]. Optik, 224, 165746(2020).

    [115] Fu X L, Li G L, Dong D M. Improving the detection sensitivity for laser-induced breakdown spectroscopy: a review[J]. Frontiers in Physics, 8, 68(2020).

    [116] Colao F, Pershin S, Lazic V et al. Investigation of the mechanisms involved in formation and decay of laser-produced plasmas[J]. Applied Surface Science, 197/198, 207-212(2002).

    [117] Colao F, Lazic V, Fantoni R et al. A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1167-1179(2002).

    [118] Scaffidi J, Pender J, Pearman W et al. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses[J]. Applied Optics, 42, 6099-6106(2003).

    [119] Caneve L, Colao F, Fantoni R et al. Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy[J]. Applied Physics A, 85, 151-157(2006).

    [120] de Giacomo A, Dell’Aglio M, de Pascale O et al. From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 721-738(2007).

    [121] de Giacomo A, Dell’Aglio M, Bruno D et al. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 805-816(2008).

    [122] Lin Z H, Li R H, Jiang Y H et al. Signal enhancement in target-enhanced orthogonal double-pulse laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 48, 2411001(2021).

    [123] Hilbk-Kortenbruck F, Noll R, Wintjens P et al. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 933-945(2001).

    [124] Li C M, Hao Z Q, Zou Z M et al. Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J]. Optics Express, 24, 7850-7857(2016).

    [125] Li J M, Xu M L, Ma Q X et al. Sensitive determination of silicon contents in low-alloy steels using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J]. Talanta, 194, 697-702(2019).

    [126] Zhou R, Liu K, Tang Z Y et al. Determination of micronutrient elements in soil using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence[J]. Journal of Analytical Atomic Spectrometry, 36, 614-621(2021).

    [127] Ikeda Y, Moon A, Kaneko M. Development of microwave-enhanced spark-induced breakdown spectroscopy[J]. Applied Optics, 49, C95-C100(2010).

    [128] Liu Y, Baudelet M, Richardson M. Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics[J]. Journal of Analytical Atomic Spectrometry, 25, 1316-1323(2010).

    [129] Khumaeni A, Motonobu T, Katsuaki A et al. Enhancement of LIBS emission using antenna-coupled microwave[J]. Optics Express, 21, 29755-29768(2013).

    [130] Tang Y, Li J M, Hao Z Q et al. Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation[J]. Optics Express, 26, 12121-12130(2018).

    [131] Wakil M A, Alwahabi Z T. Quantitative fluorine and bromine detection under ambient conditions via molecular emission[J]. Journal of Analytical Atomic Spectrometry, 35, 2620-2626(2020).

    [132] Viljanen J, Sun Z W, Alwahabi Z T. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 118, 29-36(2016).

    [133] Zhou W D, Li K X, Li X F et al. Development of a nanosecond discharge-enhanced laser plasma spectroscopy[J]. Optics Letters, 36, 2961-3963(2011).

    [134] Zhou W D, Li K X, Shen Q M et al. Optical emission enhancement using laser ablation combined with fast pulse discharge[J]. Optics Express, 18, 2573-2578(2010).

    [135] Li K X, Zhou W D, Shen Q M et al. Laser ablation assisted spark induced breakdown spectroscopy on soil samples[J]. Journal of Analytical Atomic Spectrometry, 25, 1475-1481(2010).

    [136] Li X F, Zhou W D, Li K X et al. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil[J]. Optics Communications, 285, 54-58(2012).

    [137] Ge F, Gao L, Peng X X et al. Atmospheric pressure glow discharge optical emission spectrometry coupled with laser ablation for direct solid quantitative determination of Zn, Pb, and Cd in soils[J]. Talanta, 218, 121119(2020).

    [138] Kim E, Choi W Z. Real-time identification of plastics by types using laser-induced breakdown spectroscopy[J]. Journal of Material Cycles and Waste Management, 21, 176-180(2019).

    [139] Siddiqui M N, Gondal M A, Redhwi H H. Identification of different type of polymers in plastics waste[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 43, 1303-1310(2008).

    [140] Gondal M A, Siddiqui M N. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management[J]. Journal of Environmental Science and Health, Part A, 42, 1989-1997(2007).

    [141] Anzano J, Lasheras R J, Bonilla B et al. Classification of polymers by determining of C1∶C2∶CN∶H∶N∶O ratios by laser-induced plasma spectroscopy (LIPS)[J]. Polymer Testing, 27, 705-710(2008).

    [142] Barbier S, Perrier S, Freyermuth P et al. Plastic identification based on molecular and elemental information from laser induced breakdown spectra: a comparison of plasma conditions in view of efficient sorting[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 88, 167-173(2013).

    [143] Anzano J, Casanova M E, Bermúdez M S et al. Rapid characterization of plastics using laser-induced plasma spectroscopy (LIPS)[J]. Polymer Testing, 25, 623-627(2006).

    [144] Anzano J, Bonilla B, Montull-Ibor B et al. Classifications of plastic polymers based on spectral sata analysis with leaser induced breakdown spectroscopy[J]. Journal of Polymer Engineering, 30, 177-188(2010).

    [145] Lasheras R J, Bello-Gálvez C, Rodríguez-Celis E M et al. Discrimination of organic solid materials by LIBS using methods of correlation and normalized coordinates[J]. Journal of Hazardous Materials, 192, 704-713(2011).

    [146] Guo Y M, Tang Y, Du Y et al. Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 20, 065505(2018).

    [147] Costa V C, Aquino F W B, Paranhos C M et al. Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste[J]. Waste Management, 70, 212-221(2017).

    [148] Costa V C, Aquino F W B, Paranhos C M et al. Identification and classification of polymer e-waste using laser-induced breakdown spectroscopy (LIBS) and chemometric tools[J]. Polymer Testing, 59, 390-395(2017).

    [149] Ferrero A, Lucena P, Herrera R G et al. Libraries for spectrum identification: method of normalized coordinates versus linear correlation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 383-388(2008).

    [150] Brunnbauer L, Larisegger S, Lohninger H et al. Spatially resolved polymer classification using laser induced breakdown spectroscopy (LIBS) and multivariate statistics[J]. Talanta, 209, 120572(2020).

    [151] Yu Y, Guo L B, Hao Z Q et al. Accuracy improvement on polymer identification using laser-induced breakdown spectroscopy with adjusting spectral weightings[J]. Optics Express, 22, 3895-3901(2014).

    [152] Sun Q Q, Du M, Guo L B et al. Fast identification of plastics with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 37, 2205-2209(2017).

    [153] Bilge G, Sezer B, Eseller K E et al. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy[J]. Food Chemistry, 212, 183-188(2016).

    [154] Kanawade R, Mehari F, Knipfer C et al. Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery: an approach on a feedback laser control mechanism[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 87, 175-181(2013).

    [155] Chen X, Li X H, Yang S B et al. Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples[J]. Biomedical Optics Express, 9, 1057-1068(2018).

    [156] Wen D P, Liang X Y, Su M G et al. Classification of ores using laser-induced breakdown spectroscopy combined with PCA-PSO-SVM[J]. Laser & Optoelectronics Progress, 58, 2314006(2021).

    [157] Sun Q, Tran M, Smith B et al. In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy[J]. Contact Dermatitis, 43, 259-263(2000).

    [158] Lazic V, Filella M, Turner A. Determination of antimony concentrations in widely used plastic objects by laser induced breakdown spectroscopy (LIBS)[J]. Journal of Analytical Atomic Spectrometry, 33, 1917-1924(2018).

    [159] Rehan I, Gondal M A, Rehan K et al. Nondestructive determination of chromium, nickel, and zinc in neem leaves and facial care products by laser induced breakdown spectroscopy (LIBS)[J]. Analytical Letters, 55, 990-1003(2022).

    [160] Zhang L Y, Li J, Rao H H et al. LIBS-based element detection and quality identification of huanglongbing navel oranges[J]. Laser & Optoelectronics Progress, 57, 233002(2020).

    [161] Liu Y C, Chu Y W, Hu Z L et al. High-sensitivity determination of trace lead and cadmium in cosmetics using laser-induced breakdown spectroscopy with ultrasound-assisted extraction[J]. Microchemical Journal, 158, 105322(2020).

    [162] Godoi Q, Leme F O, Trevizan L C et al. Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 66, 138-143(2011).

    [163] Sun Q, Tran M, Smith B W et al. Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy[J]. Analytica Chimica Acta, 413, 187-195(2000).

    [164] Wang Q, Chen X L, Yu R H et al. Quantitative analysis of Mn, Cr in steel based on laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 31, 2546-2551(2011).

    [165] Wang Z N, Li Y, Zhang Q Y et al. Experimental investigation of quantitatively analysing trace Mo in complex metallic alloys by laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 31, 1697-1701(2011).

    [166] Zhang Y, Jia Y H, Chen J W et al. Segregation bands analysis of steel sample using laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 33, 3383-3387(2013).

    [167] Corsi M, Cristoforetti G, Hidalgo M et al. Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis[J]. Applied Optics, 42, 6133-6137(2003).

    [168] Tu C, Yuan X Q. A tentative analysis of calibration free-laser induced breakdown spectroscopy for quality inspection of gold jewelry[J]. Journal of Gems & Gemmology, 13, 1-6(2011).

    [169] Chen X L, Dong F Z, Wang Q et al. Quantitative analysis of slag by calibration-free laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 31, 3289-3293(2011).

    [170] Roldán A M, Pisarcčík M, Veis M et al. Calibration-free analysis of a tungsten-based target for diagnostics of relevant fusion materials comparing picosecond and nanosecond LIBS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 177, 106055(2021).

    [171] Miškovicčová J, Anguš M, van der Meiden H et al. Selection of molybdenum lines by quantitative analysis of molybdenum- zirconium-titanium alloy by CF-LIBS for future fusion applications[J]. Fusion Engineering and Design, 153, 111488(2020).

    [172] Hu Z L, Chen F, Zhang D et al. A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy by exploiting self-absorption[J]. Analytica Chimica Acta, 1183, 339008(2021).

    [173] Death D L, Cunningham A P, Pollard L J. Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 763-769(2008).

    [174] Death D L, Cunningham A P, Pollard L J. Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1048-1058(2009).

    [175] Yaroshchyk P, Death D L, Spencer S J. Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS[J]. Journal of Analytical Atomic Spectrometry, 27, 92-98(2012).

    [176] Yaroshchyk P, Death D L, Spencer S J. Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis[J]. Applied Spectroscopy, 64, 1335-1341(2010).

    [177] Sun L X, Yu H B, Cong Z B et al. Quantitative analysis of Mn and Si of steels by laser-induced breakdown spectroscopy combined with neural networks[J]. Acta Optica Sinica, 30, 2757-2765(2010).

    [178] Moncayo S, Manzoor S, Rosales J D et al. Qualitative and quantitative analysis of milk for the detection of adulteration by laser induced breakdown spectroscopy (LIBS)[J]. Food Chemistry, 232, 322-328(2017).

    [179] Vaniman D, Dyar M D, Wiens R et al. Ceramic ChemCam calibration targets on Mars science laboratory[J]. Space Science Reviews, 170, 229-255(2012).

    [180] Melikechi N, Mezzacappa A, Cousin A et al. Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 96, 51-60(2014).

    [181] Meslin P Y, Gasnault O, Forni O et al. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars[J]. Science, 341, 1238670(2013).

    [182] Maurice S, Clegg S M, Wiens R C et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars[J]. Journal of Analytical Atomic Spectrometry, 31, 863-889(2016).

    [183] Wiens R C, Maurice S, Robinson S H et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests[J]. Space Science Reviews, 217, 4(2021).

    [184] Wan X, Li C, Wang H et al. Design, function, and implementation of China’s first LIBS instrument (MarSCoDe) on the Zhurong Mars rover[J]. Atomic Spectroscopy, 42, 294-298(2021).

    [185] Wan X, Yuan R J, Wang H P et al. Elastic particle swarm optimization for MarSCoDe spectral calibration on Tianwen-1 Mars rover[J]. Analytical Chemistry, 93, 7970-7977(2021).

    [186] Xu W M, Liu X F, Yan Z X et al. The MarSCoDe instrument suite on the Mars rover of China’s Tianwen-1 mission[J]. Space Science Reviews, 217, 1-58(2021).

    [187] Fabre C. Advances in Laser-induced breakdown spectroscopy analysis for geology: a critical review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 166, 105799(2020).

    [188] Harmon R S, Senesi G S. Laser-induced breakdown spectroscopy-a geochemical tool for the 21st century[J]. Applied Geochemistry, 128, 104929(2021).

    [189] Kiros A, Lazic V, Gigante G E et al. Analysis of rock samples collected from rock hewn churches of Lalibela, Ethiopia using laser-induced breakdown spectroscopy[J]. Journal of Archaeological Science, 40, 2570-2578(2013).

    [190] Quarles C D, Gonzalez J J, East L J et al. Fluorine analysis using laser induced breakdown spectroscopy (LIBS)[J]. Journal of Analytical Atomic Spectrometry, 29, 1238-1242(2014).

    [191] Rifai K, Laflamme M, Constantin M et al. Analysis of gold in rock samples using laser-induced breakdown spectroscopy: matrix and heterogeneity effects[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 134, 33-41(2017).

    [192] Yang Z Q, Li G Q, She M J. Test research of online identification of cuttings lithology by LIBS technology[J]. Petroleum Drilling Techniques, 122-126(2019).

    [193] She M J, Li Y J, Li S L et al. Automatic identification of mudstone color using laser-induced breakdown spectroscopy (LIBS) experiment[J]. Mud Logging Engineering, 26(2015).

    [194] Tian Y, Wang Z N, Han X S et al. Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 102, 52-57(2014).

    [195] Wang C, Zhang W G, Yan Z Q. High precision identification of igneous rock lithology by laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 35, 2463-2468(2015).

    [196] Li Q Z, Zhang W, Tang Z Y et al. Determination of uranium in ores using laser-induced breakdown spectroscopy combined with laser-induced fluorescence[J]. Journal of Analytical Atomic Spectrometry, 35, 626-631(2020).

    [197] Qiu S L, Li A, Wang X S et al. High-accuracy quantitatively analysis of iron content in mineral based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 48, 1611002(2021).

    [198] Fabre C, Devismes D, Moncayo S et al. Elemental imaging by laser-induced breakdown spectroscopy for the geological characterization of minerals[J]. Journal of Analytical Atomic Spectrometry, 33, 1345-1353(2018).

    [199] Kuhn K, Meima J A, Rammlmair D et al. Chemical mapping of mine waste drill cores with laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence (EDXRF) for mineral resource exploration[J]. Journal of Geochemical Exploration, 161, 72-84(2016).

    [200] Gaft M, Raichlin Y, Pelascini F et al. Imaging rare-earth elements in minerals by laser-induced plasma spectroscopy: molecular emission and plasma-induced luminescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 151, 12-19(2019).

    [201] Sweetapple M T, Tassios S. Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals[J]. American Mineralogist, 100, 2141-2151(2015).

    [202] El Haddad J, de Lima Filho E S, Vanier F et al. Multiphase mineral identification and quantification by laser-induced breakdown spectroscopy[J]. Minerals Engineering, 134, 281-290(2019).

    [203] Yan C H, Qi J, Ma J X et al. Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernel-based extreme learning machine[J]. Chemometrics and Intelligent Laboratory Systems, 167, 226-231(2017).

    [204] Li S S, Dong M R, Luo F S et al. Experimental investigation of combustion characteristics and NOx formation of coal particles using laser induced breakdown spectroscopy[J]. Journal of the Energy Institute, 93, 52-61(2020).

    [205] Stipe C B, Miller A L, Brown J et al. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust[J]. Applied Spectroscopy, 66, 1286-1293(2012).

    [206] Rong K, Wang Z Z, Hu R M et al. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 22, 074010(2020).

    [207] Yu L Y, Lu J D, Chen W et al. Quantitative analysis of atmosphere by laser-induced breakdown spectroscopy[J]. Journal of Applied Optics, 27, 147-151(2006).

    [208] Capitelli F, Colao F, Provenzano M R et al. Determination of heavy metals in soils by laser induced breakdown spectroscopy[J]. Geoderma, 106, 45-62(2002).

    [209] Santos D Jr, Nunes L C, Trevizan L C et al. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1073-1078(2009).

    [210] Srungaram P K, Ayyalasomayajula K K, Yu-Yueh F et al. Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 87, 108-113(2013).

    [211] Xu H G, Guan S C, Fu Y X et al. Laser induced breakdown spectroscopy of the trace metal element Pb in soil[J]. Chinese Journal of Lasers, 34, 577-581(2007).

    [212] Wang J W, Zhang N Z, Hou K Y et al. Application of LIBS technology to the rapid measure of heavy metal contamination in soils[J]. Progress in Chemistry, 20, 1165-1171(2008).

    [213] Liu L M, Lin Z X, Li J et al. Analysis of the Yuntaishan geology by laser-induced breakdown spectroscopy[J]. Applied Laser, 28, 386-389(2008).

    [214] Lu C P, Liu W Q, Zhao N J et al. Quantitative analysis of chrome in soil samples using laser-induced breakdown spectroscopy[J]. Acta Physica Sinica, 60, 395-399(2011).

    [215] Pan A M, Liu L M, Lin Z X. Analysis of the Cd element in soil by laser-induced breakdown spectroscopy[J]. Applied Laser, 32, 124-127(2012).

    [216] Chen T B, Yao M Y, Liu M H et al. Quantitative analysis of Ba and Sr in soil using laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 32, 1658-1661(2012).

    [217] Yi R X, Yang X Y, Zhou R et al. Determination of trace available heavy metals in soil using laser-induced breakdown spectroscopy assisted with phase transformation method[J]. Analytical Chemistry, 90, 7080-7085(2018).

    [218] Gao P Y, Yang P, Zhou R et al. Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J]. Applied Optics, 57, 8942-8946(2018).

    [219] Rai V N, Yueh F Y, Singh J P. Study of laser-induced breakdown emission from liquid under double-pulse excitation[J]. Applied Optics, 42, 2094-2101(2003).

    [220] Rai N K, Rai A K, Kumar A et al. Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples[J]. Applied Optics, 47, G105-G111(2008).

    [221] Koch S, Court R, Garen W et al. Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1230-1235(2005).

    [222] Matsumoto A, Tamura A, Koda R et al. On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential[J]. Analytical Chemistry, 87, 1655-1661(2015).

    [223] Cheung N H, Yeung E S. Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown[J]. Applied Spectroscopy, 47, 882-886(1993).

    [224] Feng Y, Yang J J, Fan J M et al. Investigation of laser-induced breakdown spectroscopy of a liquid jet[J]. Applied Optics, 49, C70-C74(2010).

    [225] Huang J S, Ke C B, Huang L S et al. The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 35-48(2002).

    [226] Zhang D C, Hu Z Q, Su Y B et al. Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS)[J]. Optics Express, 26, 18794-18802(2018).

    [227] Yang X Y, Li X Y, Cui Z F et al. Analytical-performance improvement of aqueous solution by chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy[J]. Applied Optics, 57, 7135-7139(2018).

    [228] Gondal M A, Habibullah Y B, Baig U et al. Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS[J]. Talanta, 152, 341-352(2016).

    [229] Cho H H, Kim Y J, Jo Y S et al. Application of laser-induced breakdown spectrometry for direct determination of trace elements in starch-based flours[J]. Journal of Analytical Atomic Spectrometry, 16, 622-627(2001).

    [230] He X W, Huang L, Liu M H et al. Determination of Cd in rice by laser-induced breakdown spectroscopy[J]. Applied Laser, 34, 72-75(2014).

    [231] Peng J Y, He Y, Ye L H et al. Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: a case study for chromium content detection in rice leaves[J]. Analytical Chemistry, 89, 7593-7600(2017).

    [232] Liu F, Ye L H, Peng J Y et al. Fast detection of copper content in rice by laser-induced breakdown spectroscopy with uni- and multivariate analysis[J]. Sensors, 18, 705(2018).

    [233] Yang H, Huang L, Liu M H et al. Improvement of analytical sensitivity on detecting Cd residue in rice by dual pulse laser induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 53, 053005(2016).

    [234] Hu H Q, Xu X H, Huang L et al. Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 36, 1180-1185(2016).

    [235] Kim G, Kwak J, Choi J et al. Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS)[J]. Journal of Agricultural and Food Chemistry, 60, 718-724(2012).

    [236] Rao G F, Huang L, Liu M H et al. Discrimination of microbe species by laser induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 46, 1122-1128(2018).

    [237] Prochazka D, Mazura M, Samek O et al. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 139, 6-12(2018).

    [238] Bilge G, Velioglu H M, Sezer B et al. Identification of meat species by using laser-induced breakdown spectroscopy[J]. Meat Science, 119, 118-122(2016).

    [239] Yueh F Y, Zheng H B, Singh J P et al. Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1059-1067(2009).

    [240] Zhu Y N, Yang P, Yang X Y et al. Classification of fresh meat species using laser-induced breakdown spectroscopy with support vector machine and principal component analysis[J]. Chinese Journal of Analytical Chemistry, 45, 336-341(2017).

    [241] Chen T B, Liu M H, Huang L et al. Effects of different pretreatment method on laser-induced breakdown spectroscopy measurement of Pb in pork[J]. Chinese Journal of Analytical Chemistry, 44, 1029-1034(2016).

    [242] Wu D, Hai R, Liu P et al. Preliminary study of identifying trench oil based on laser-induced breakdown spectroscopy[J]. Chinese Science Bulletin, 59, 2071-2076(2014).

    [243] Zhu Q S, Hao S G, Luo N N et al. Detection and quantification of vegetable oil adulteration based on laser-induced fluorescence spectroscopy[J]. Chinese Journal of Lasers, 46, 1211002(2019).

    [244] Caceres J O, Moncayo S, Rosales J D et al. Application of laser-induced breakdown spectroscopy (LIBS) and neural networks to olive oils analysis[J]. Applied Spectroscopy, 67, 1064-1072(2013).

    [245] Gazeli O, Bellou E, Stefas D et al. Laser-based classification of olive oils assisted by machine learning[J]. Food Chemistry, 302, 125329(2020).

    [246] Bellou E, Gyftokostas N, Stefas D et al. Laser-induced breakdown spectroscopy assisted by machine learning for olive oils classification: the effect of the experimental parameters[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 163, 105746(2020).

    [247] Gyftokostas N, Stefas D, Kokkinos V et al. Laser-induced breakdown spectroscopy coupled with machine learning as a tool for olive oil authenticity and geographic discrimination[J]. Scientific Reports, 11, 5360(2021).

    [248] Stefas D, Gyftokostas N, Kourelias P et al. Discrimination of olive oils based on the olive cultivar origin by machine learning employing the fusion of emission and absorption spectroscopic data[J]. Food Control, 130, 108318(2021).

    [249] Vrenegor J, Noll R, Sturm V. Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1083-1091(2005).

    [250] Mermet J M, Mauchien P, Lacour J L. Processing of shot-to-shot raw data to improve precision in laser-induced breakdown spectrometry microprobe[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 999-1005(2008).

    [251] Sturm V, Fleige R, de Kanter M et al. Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works[J]. Analytical Chemistry, 86, 9687-9692(2014).

    [252] Tsai S J J, Chen S Y, Chung Y S et al. Spatially resolved, laser-induced breakdown spectroscopy, development, and application for the analysis of Al and Si in nickel-based alloys[J]. Analytical Chemistry, 78, 7432-7439(2006).

    [253] Zhu D H, Wang X, Ni X W et al. Determination of aluminum in nickel-based superalloys by using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 13, 486-489(2011).

    [254] Gupta G P, Suri B M, Verma A et al. Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy[J]. Journal of Alloys and Compounds, 509, 3740-3745(2011).

    [255] Kim T H, Lee D H, Kim D et al. Analysis of oxidation behavior of Ni-base superalloys by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 27, 1525-1531(2012).

    [256] Shen M, Li C M, Na D et al. Determination of yttrium in titanium alloys using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J]. Journal of Analytical Atomic Spectrometry, 33, 658-662(2018).

    [257] Busser B, Moncayo S, Coll J L et al. Elemental imaging using laser-induced breakdown spectroscopy: a new and promising approach for biological and medical applications[J]. Coordination Chemistry Reviews, 358, 70-79(2018).

    [258] Kumar A, Yueh F Y, Singh J P et al. Characterization of malignant tissue cells by laser-induced breakdown spectroscopy[J]. Applied Optics, 43, 5399-5403(2004).

    [259] Han J H, Moon Y, Lee J J et al. Differentiation of cutaneous melanoma from surrounding skin using laser-induced breakdown spectroscopy[J]. Biomedical Optics Express, 7, 57-66(2015).

    [260] Chen X, Li X H, Yu X et al. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 139, 63-69(2018).

    [261] Markushin Y, Sivakumar P, Connolly D et al. Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma[J]. Analytical and Bioanalytical Chemistry, 407, 1849-1855(2015).

    [262] Samek O, Beddows D C S, Telle H H et al. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 865-875(2001).

    [263] Bilmes G M, Freisztav C, Schinca D et al. Cleaning and characterization of objects of cultural value by laser ablation[J]. Proceedings of SPIE, 5857, 585704(2005).

    [264] Hamzaoui S, Khleifia R, Jaïdane N et al. Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique[J]. Lasers in Medical Science, 26, 79-83(2011).

    [265] Ng C W, Cheung N H. Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration[J]. Analytical Chemistry, 72, 247-250(2000).

    Xiangyou Li, Ke Liu, Ran Zhou, Wen Zhang. Laser-Induced Breakdown Spectroscopy and Its Application[J]. Chinese Journal of Lasers, 2022, 49(12): 1202003
    Download Citation