[1] Shay J, Wagner S, Kasper H. Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 1975, 27(2): 89–90
[2] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019, 9(6): 1863–1867
[3] HaynesWM, Lide D R. Abundance of Elements in the Earth’s Crust and in the Sea. CRC Handbook of Chemistry and Physics. 95th edition, Internet Version. CRC Press, 2014
[4] Rodriguez-Lazcano Y, Nair M, Nair P.CuxSbySz thin films produced by annealing chemically deposited Sb2S3-CuS thin films. Modern Physics Letters B, 2001, 15(17n19): 667–670
[5] Rodríguez-Lazcano Y, Nair M, Nair P. CuSbS2 thin film formed through annealing chemically deposited Sb2S3–CuS thin films. Journal of Crystal Growth, 2001, 223(3): 399–406
[6] Shockley W, Queisser H J. Detailed balance limit of efficiency of pn junction solar cells. Journal of Applied Physics, 1961, 32(3): 510– 519
[7] Zhou J, Bian G Q, Zhu Q Y, Zhang Y, Li C Y, Dai J. Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure. Journal of Solid State Chemistry, 2009, 182(2): 259–264
[8] Hoang K, Mahanti S D. Atomic and electronic structures of IV–VI2 ternary chalcogenides. Journal of Science: Advanced Materials and Devices, 2016, 1(1): 51–56
[9] ablero C. The optical properties of CuPbSbS3-bournonite with photovoltaic applications. Theoretical Chemistry Accounts, 2016, 135(5): 126
[10] Frumar M, Kala T, Horak J. Growth and some physical properties of semiconducting CuPbSbS3 crystals. Journal of Crystal Growth, 1973, 20(3): 239–244
[11] Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chemistry of Materials, 2014, 26(10): 3135–3143
[12] Tinoco T, Rincón C, Quintero M, Pérez G S. Phase diagram and optical energy gaps for CuInyGa1 – ySe2 alloys. Physica Status Solidi (a), 1991, 124(2): 427–434
[13] Liu Y, Yang B, Zhang M, Xia B, Chen C, Liu X, Zhong J, Xiao Z, Tang J. Bournonite CuPbSbS3: an electronically-3D, defect-tolerant, and solution-processable semiconductor for efficient solar cells. Nano Energy, 2020, 71: 104574
[14] Majsztrik P, Kirkham M, Garcia-Negron V, Lara-Curzio E, Skoug E, Morelli D. Effect of thermal processing on the microstructure and composition of Cu–Sb–Se compounds. Journal of Materials Science, 2013, 48(5): 2188–2198
[15] Zhang Y, Ozolins V, Morelli D, Wolverton C. Prediction of new stable compounds and promising thermoelectrics in the Cu–Sb–Se system. Chemistry of Materials, 2014, 26(11): 3427–3435
[16] Edenharter A, Nowacki W, Takéuchi Y. Verfeinerung der Kristallstruktur von Bournonit [(SbS3)2|CuIV2PbVIIPbVIII] und von Seligmannit [(AsS3)2|Cu2 IVPbVIIPbVIII]. Zeitschrift für Kristallographie. Crystalline Materials, 1970, 131(1–6): 397–417
[17] Xiao Z, Meng W, Wang J, Mitzi D B, Yan Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4(2): 206–216
[18] Temple D J, Kehoe A B, Allen J P, Watson G W, Scanlon D O. Geometry, electronic structure, and bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): alternative solar cell absorber materials? Journal of Physical Chemistry C, 2012, 116(13): 7334–7340
[19] Rühle S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 2016, 130: 139–147
[20] Niu G, Guo X, Wang L. Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 8970–8980
[21] Banu S, Ahn S J, Ahn S K, Yoon K, Cho A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Solar Energy Materials and Solar Cells, 2016, 151: 14– 23
[22] Rabhi A, Kanzari M, Rezig B. Growth and vacuum post-annealing effect on the properties of the new absorber CuSbS2 thin films. Materials Letters, 2008, 62(20): 3576–3578
[23] Garza C, Shaji S, Arato A, Tijerina E P, Castillo G A, Roy T D, Krishnan B. p-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Solar Energy Materials and Solar Cells, 2011, 95(8): 2001–2005
[24] Wan L, Ma C, Hu K, Zhou R, Mao X, Pan S,Wong L H, Xu J. Twostage co-evaporated CuSbS2 thin films for solar cells. Journal of Alloys and Compounds, 2016, 680: 182–190
[25] Saragih A D, Kuo D H, Tuan T T A. Thin film solar cell based on p- CuSbS2 together with Cd-free GaN/InGaN bilayer. Journal of Materials Science Materials in Electronics, 2017, 28(3): 2996–3003
[26] Welch A W, Zawadzki P P, Lany S, Wolden C A, Zakutayev A. Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Solar Energy Materials and Solar Cells, 2015, 132: 499– 506
[27] Rodríguez-Lazcano Y, Nair M, Nair P. Photovoltaic pin structure of Sb2S3 and CuSbS2 absorber films obtained via chemical bath deposition. Journal of the Electrochemical Society, 2005, 152(8): G635–G638
[28] Manolache S, Duta A, Isac L, Nanu M, Goossens A, Schoonman J. The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films, 2007, 515(15): 5957–5960
[29] Septina W, Ikeda S, Iga Y, Harada T, Matsumura M. Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films, 2014, 550: 700–704
[30] Zhang Y, Huang J, Yan C, Sun K, Cui X, Liu F, Liu Z, Zhang X, Liu X, Stride J A, GreenMA, Hao X. High open-circuit voltage CuSbS2 solar cells achieved through the formation of epitaxial growth of CdS/CuSbS2 hetero-interface by post-annealing treatment. Progress in Photovoltaics: Research and Applications, 2019, 27(1): 37–43
[31] Choi Y C, Yeom E J, Ahn T K, Seok S I. CuSbS2 -sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution. Angewandte Chemie International Edition, 2015, 54(13): 4005–4009.