• Photonics Research
  • Vol. 3, Issue 2, A25 (2015)
Fei Lou, Ruwei Zhao, Jingliang He*, Zhitai Jia, Xiancui Su, Zhaowei Wang, Jia Hou, and Baitao Zhang
Author Affiliations
  • State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • show less
    DOI: 10.1364/prj.3.000a25 Cite this Article Set citation alerts
    Fei Lou, Ruwei Zhao, Jingliang He, Zhitai Jia, Xiancui Su, Zhaowei Wang, Jia Hou, Baitao Zhang. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2): A25 Copy Citation Text show less
    References

    [1] T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).

    [2] Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).

    [3] A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).

    [4] H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

    [5] I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).

    [6] F. Lou, L. Cui, Y. B. Li, J. Hou, J. L. He, Z. T. Jia, J. Q. Liu, B. T. Zhang, K. J. Yang, Z. W. Wang, and X. T. Tao, “High-efficiency femtosecond Yb:Gd3Al0.5Ga4.5O12 mode-locked laser based on reduced graphene oxide,” Opt. Lett. 38, 4189–4192 (2013).

    [7] J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).

    [8] E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).

    [9] J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).

    [10] M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).

    [11] J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett. 9, 15–19 (2012).

    [12] S. Han, X. Li, H. Xu, Y. Zhao, H. Yu, H. Zhang, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Graphene Q-switched 0.9-μm Nd:La0.11Y0.89VO4 laser,” Chin. Opt. Lett. 12, 011401 (2014).

    [13] X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express 19, 9951–9955 (2011).

    [14] J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Yang, Y. Z. Wu, S. D. Liu, and B. T. Zhang, “Efficient graphene Q-switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett. 37, 2652– 2654 (2012).

    [15] Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operation at 1645 nm,” Laser Phys. Lett. 10, 055801 (2013).

    [16] J. Hou, B. T. Zhang, J. L. He, Z. W. Wang, F. Lou, J. Ning, R. W. Zhao, and X. C. Su, “Passively Q-switched 2 μm Tm:YAP laser based on graphene saturable absorber mirror,” Appl. Opt. 53, 4968–4971 (2014).

    [17] M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).

    [18] X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).

    [19] H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).

    [20] P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator Bi2Te3 saturable for the passive Q-switching operation of an in-band pumped 1645- nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).

    [21] F. Q. Jia, H. Chen, P. Liu, Y. Z. Huang, and Z. Q. Luo, “Nanosecond-pulsed, dual-wavelength passively Q-switched c-cut Nd:YVO4 laser using a few-layer Bi2Se3 saturable absorber,” IEEE J. Sel. Top. Quantum Electron.

    [22] 1601806 (2015). 22. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).

    [23] Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbiumdoped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).

    [24] C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).

    [25] Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).

    [26] Y. L. Li, Y. Rao, K. F. Mak, Y. M. You, S. Y. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).

    [27] R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interface 6, 314–318 (2014).

    [28] W. T. Hsu, Z. A. Zhao, L. J. Li, C. H. Chen, M. H. Chiu, P. S. Chang, Y. C. Chou, and W. H. Chang, “Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers,” ACS Nano 8, 2951–2958 (2014).

    [29] K. P. Wang, J. Wang, J. T. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Y. Feng, X. Y. Zhang, B. X. Jiang, Q. Z. Zhao, H. Z. Zhang, J. N. Coleman, L. Zhang, and W. Josef, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).

    [30] S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).

    [31] J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field,” Sci. Rep. 4, 6346 (2014).

    [32] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).

    [33] H. D. Xia, H. P. Li, C. Y. Lan, C. Li, X. X. Zhang, S. J. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVDgrown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22, 17341–17348 (2014).

    [34] H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).

    [35] B. Xu, Y. J. Cheng, Y. Wang, Y. Z. Huang, J. Peng, Z. Q. Luo, H. Y. Xu, Z. P. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber,” Opt. Express 22, 28934–28940 (2014).

    [36] Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32, 4077–4084 (2014).

    [37] S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).

    [38] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).

    [39] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).

    [40] T. Li and G. Galli, “Electronic properties of MoS2 nanoparticles,” J. Phys. Chem. C 111, 16192–16196 (2007).

    [41] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).

    [42] F. Lou, Z. T. Jia, J. L. He, R. W. Zhao, J. Hou, Z. W. Wang, S. D. Liu, B. T. Zhang, and C. M. Dong, “Efficient high-peak power wavelength-switchable femtosecond Yb:LGGG laser,” IEEE Photon. Technol. Lett. 27, 407–410 (2015).

    [43] S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J.-F. Guinel, and R. S. Katiyar, “Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2,” J. Phys. Chem. C 117, 9042– 9047 (2013).

    [44] W. Li, J. Carrete, and N. Mingo, “Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles,” Appl. Phys. Lett. 103, 253103 (2013).

    CLP Journals

    [1] X. Liu, K. Yang, S. Zhao, T. Li, W. Qiao, H. Zhang, B. Zhang, J. He, J. Bian, L. Zheng, L. Su, J. Xu. High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber[J]. Photonics Research, 2017, 5(5): 461

    [2] Xi Wang, Zhenfu Wang, Yonggang Wang, Lu Li, Guowen Yang, Jinping Li. Watt-level high-power passively Q-switched laser based on a black phosphorus solution saturable absorber[J]. Chinese Optics Letters, 2017, 15(1): 011402

    [3] Yingshuang Shan, Le Zhang, Tianyuan Zhou, Cen Shao, Lei Zhang, Yuelong Ma, Qing Yao, Zhigang Jiang, Farida A. Selim, Hao Chen. One-order-higher Cr4+ conversion efficiency in Cr4+:YAG transparent ceramics for a high-frequency passively Q-switched laser[J]. Photonics Research, 2019, 7(8): 933

    [4] Shande Liu, Lihe Zheng, Jun Xu, Yuping Zhang, Huiyun Zhang, Dehua Li, Tingqi Ren, Baitao Zhang, Jingliang He. Anisotropy of laser emission in monoclinic Nd:ScYSiO5 crystals cut along the optical indicatrix axes[J]. Chinese Optics Letters, 2016, 14(2): 021406

    [5] Bo Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited][J]. Chinese Optics Letters, 2018, 16(2): 020004

    Fei Lou, Ruwei Zhao, Jingliang He, Zhitai Jia, Xiancui Su, Zhaowei Wang, Jia Hou, Baitao Zhang. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2): A25
    Download Citation