• Advanced Photonics
  • Vol. 6, Issue 5, 056004 (2024)
Hang Chen1,†, Sheng Gao1, Haiou Zhang1, Zejia Zhao1..., Zhengyang Duan1, Gordon Wetzstein2 and Xing Lin1,3,*|Show fewer author(s)
Author Affiliations
  • 1Tsinghua University, Department of Electronic Engineering, Beijing, China
  • 2Stanford University, Department of Electrical Engineering, California, United States
  • 3Tsinghua University, Beijing National Research Center for Information Science and Technology, Beijing, China
  • show less
    DOI: 10.1117/1.AP.6.5.056004 Cite this Article Set citation alerts
    Hang Chen, Sheng Gao, Haiou Zhang, Zejia Zhao, Zhengyang Duan, Gordon Wetzstein, Xing Lin, "Superresolution imaging using superoscillatory diffractive neural networks," Adv. Photon. 6, 056004 (2024) Copy Citation Text show less
    References

    [1] N. I. Zheludev. What diffraction limit?. Nat. Mater., 7, 420-422(2008).

    [2] J. W. Goodman, P. Sutton. Introduction to Fourier optics. J. Eur. Opt. Soc. B, 8, 1095(1996).

    [3] E. Betzig, J. K. Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 257, 189-195(1992).

    [4] B. Hecht et al. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys., 112, 7761-7774(2000).

    [5] J. A. Porto, R. Carminati, J.-J. Greffet. Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy. J. Appl. Phys., 88, 4845-4850(2000).

    [6] M. Lelek et al. Single-molecule localization microscopy. Nat. Rev. Method. Primers, 1, 39(2021).

    [7] S. Colabrese et al. Machine learning approach for single molecule localisation microscopy. Biomed. Opt. Express, 9, 1680-1691(2018).

    [8] H. Blom, J. Widengren. Stimulated emission depletion microscopy. Chem. Rev., 117, 7377-7427(2017).

    [9] J. N. Farahani, M. J. Schibler, L. A. Bentolila. Stimulated emission depletion (STED) microscopy: from theory to practice. Microsc.: Sci. Technol. Appl. Educ., 2, 1539-1547(2010).

    [10] N. I. Zheludev, G. Yuan. Optical superoscillation technologies beyond the diffraction limit. Nat. Rev. Phys., 4, 16-32(2022).

    [11] F. M. Huang, N. I. Zheludev. Super-resolution without evanescent waves. Nano Lett., 9, 1249-1254(2009).

    [12] K. S. Rogers et al. Optimising superoscillatory spots for far-field super-resolution imaging. Opt. Express, 26, 8095-8112(2018).

    [13] D. Tang et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev., 9, 713-719(2015).

    [14] Z. Wu et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light. ACS Photonics, 7, 180-189(2019).

    [15] E. T. F. Rogers et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater., 11, 432-435(2012).

    [16] Y. Yu et al. An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses. Nanomaterials, 8, 185(2018).

    [17] G. H. Yuan, E. T.F. Rogers, N. I. Zheludev. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light: Sci. Appl., 6, e17036(2017).

    [18] J. Diao et al. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles. Opt. Express, 24, 1924-1933(2016).

    [19] K. Huang et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev., 8, 152-157(2014).

    [20] G. H. Yuan et al. Quantum super-oscillation of a single photon. Light: Sci. Appl., 5, e16127(2016).

    [21] Q. Zhang et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light. Adv. Opt. Mater., 8, 1901885(2020).

    [22] F. Qin et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater., 29, 1602721(2017).

    [23] Z. Duan, H. Chen, X. Lin. Optical multi-task learning using multi-wavelength diffractive deep neural networks. Nanophotonics, 12, 893-903(2023).

    [24] H. Chen et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7, 1483-1491(2021).

    [25] Z. Zheng et al. Dual adaptive training of photonic neural networks. Nat. Mach. Intell., 5, 1119-1129(2023).

    [26] T. Zhou et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [27] D. Semwogerere, E. R. Weeks. Confocal microscopy. Encyclopedia Biomater. Biomed.l Eng., 23, 1-10(2005).

    [28] A. D. Elliott. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytometry, 92, e68(2020).

    [29] M. Gu et al. Optically digitalized holography: a perspective for all-optical machine learning. Engineering, 5, 363-365(2019).

    [30] S. Lee, C. Park, J. Rho. Mapping information and light: trends of AI-enabled metaphotonics. Curr. Opin. Solid State Mater. Sci., 29, 101144(2024).

    [31] T. Badloe, S. Lee, J. Rho. Computation at the speed of light: metamaterials for all-optical calculations and neural networks. Adv. Photonics, 4, 064002(2022).

    [32] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [33] S. Gao et al. Super-resolution diffractive neural network for all-optical direction of arrival estimation beyond diffraction limits. Sci. Appl., 13, 161(2024).

    [34] Z. Wang et al. Opto-intelligence spectrometer using diffractive neural networks. Nanophotonics, 13, 3883-3893(2024).

    [35] H. Chen, Y. Shen. Large-scale distributed diffractive-interference hybrid photonic chiplets. Adv. Photonics, 6, 040502(2024).

    Hang Chen, Sheng Gao, Haiou Zhang, Zejia Zhao, Zhengyang Duan, Gordon Wetzstein, Xing Lin, "Superresolution imaging using superoscillatory diffractive neural networks," Adv. Photon. 6, 056004 (2024)
    Download Citation