• Chinese Journal of Lasers
  • Vol. 50, Issue 18, 1813012 (2023)
Pengcheng Zheng1, Xiangsheng Xie2、*, Haowen Liang1、**, and Jianying Zhou1
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Astronomy, School of Physics, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
  • 2Department of Physics, College of Science, Shantou University, Shantou 515063, Guangdong, China
  • show less
    DOI: 10.3788/CJL230919 Cite this Article Set citation alerts
    Pengcheng Zheng, Xiangsheng Xie, Haowen Liang, Jianying Zhou. Small Size Optical Field Advancements for Optical Information Storage[J]. Chinese Journal of Lasers, 2023, 50(18): 1813012 Copy Citation Text show less
    References

    [1] Ding D Y, Gu M F, Liang Z C. The progress of optical storage[J]. Journal of Jinling Institute of Technology, 20, 17-21(2004).

    [2] Zheng C X. Research progress of optical storage technology[J]. CC News, 20-23(2009).

    [3] Zhang D L, Tang Q B, Shi D H. Technology development of high density optical data storage[J]. Laser Journal, 27, 4-7(2006).

    [4] Hong T, Wang J, Li D C. The application of near-field optics in high density data storage[J]. Optical Technology, 27, 255-259(2001).

    [5] Wang S C, Wei C, Feng Y H et al. All-optical helicity-dependent magnetic switching by first-order azimuthally polarized vortex beams[J]. Applied Physics Letters, 113, 171108(2018).

    [6] Wang S C, Wei C, Feng Y H et al. Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo[J]. Light: Science & Applications, 10, 8(2021).

    [7] Xu D Y. Progress in basic research on optical storage technology in China[J]. China Mediatech, 4, 22-24(2006).

    [8] Ditlbacher H, Krenn J R, Lamprecht B et al. Spectrally coded optical data storage by metal nanoparticles[J]. Optics Letters, 25, 563-565(2000).

    [9] Pham H H, Gourevich I, Oh J K et al. A multidye nanostructured material for optical data storage and security data encryption[J]. Advanced Materials, 16, 516-520(2004).

    [10] Alasfar S, Ishikawa M, Kawata Y et al. Polarization-multiplexed optical memory with urethane-urea copolymers[J]. Applied Optics, 38, 6201-6204(1999).

    [11] Niidome Y, Urakawa S, Kawahara M et al. Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation[J]. Japanese Journal of Applied Physics, 42, 1749-1750(2003).

    [12] Wilson O, Wilson G J, Mulvaney P. Laser writing in polarized silver nanorod films[J]. Advanced Materials, 14, 1000-1004(2002).

    [13] Pérez-Juste J, Rodríguez-González B, Mulvaney P et al. Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films[J]. Advanced Functional Materials, 15, 1065-1071(2005).

    [14] Li X P, Chon J W M, Wu S H et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo) anisole doped polymer[J]. Optics Letters, 32, 277-279(2007).

    [15] Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters, 16, 1780-1782(1991).

    [16] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 265, 749-752(1994).

    [17] Cumpston B H, Ananthavel S P, Barlow S et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 398, 51-54(1999).

    [18] Kawata S, Kawata Y. Three-dimensional optical data storage using photochromic materials[J]. Chemical Reviews, 100, 1777-1788(2000).

    [19] Day D, Gu M, Smallridge A. Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer[J]. Advanced Materials, 13, 1005-1007(2001).

    [20] Kelley J D, Stuff M I, Hovis F E et al. Removal of small particles from surfaces by pulsed laser irradiation: observations and a mechanism[J]. Proceedings of SPIE, 1415, 211-219(1991).

    [21] Southwell W H. Validity of the Fresnel approximation in the near field[J]. Journal of the Optical Society of America, 71, 7-14(1981).

    [22] Ling M, Dong Y, Cheng L et al. Propagation properties of hollow cone double Gaussian beams[J]. Acta Optica Sinica, 29, 2920-2923(2009).

    [23] Tang D L, Wang C T, Zhao Z Y et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 9, 713-719(2015).

    [24] Wan X W, Shen B, Menon R. Diffractive lens design for optimized focusing[J]. Journal of the Optical Society of America A, 31, B27-B33(2014).

    [25] Dong Y A, Zhang X H, Ning G B et al. Propagation properties of hollow conical double half-Gaussian beams[J]. Optik, 121, 559-562(2010).

    [26] Xiao C, Zeng P C, Hu L X et al. Generation of arbitrary partially coherent Bessel beam array with a LED for confocal imaging[J]. Optics Express, 27, 29510-29520(2019).

    [27] Zhu X T, Zheng P C, Xie X S. Super-diffraction focusing based on Bessel beam controlled by composited light field[J]. Laser & Optoelectronics Progress, 59, 2105001(2022).

    [28] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).

    [29] Quabis S, Dorn R, Eberler M et al. Focusing light to a tighter spot[J]. Optics Communications, 179, 1-7(2000).

    [30] Wang H F, Shi L P, Lukyanchuk B et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2, 501-505(2008).

    [31] Chen R, Yuan X J, Pang X N. Focal field simulation of vecterial beam based on Matlab[J]. Physics and Engineering, 32, 13-17(2022).

    [32] Liu T, Tan J B, Liu J A et al. Vectorial design of super-oscillatory lens[J]. Optics Express, 21, 15090-15101(2013).

    [33] Yu A P, Chen G, Zhang Z H et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 6, 38859(2016).

    [34] Chen G, Wu Z X, Yu A P et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 6, 37776(2016).

    [35] Chen G, Li Y Y, Yu A P et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 6, 29068(2016).

    [36] Diao J S, Yuan W Z, Yu Y T et al. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 24, 1924-1933(2016).

    [37] Chen Z H, Zhang Y, Xiao M. Design of a superoscillatory lens for a polarized beam[J]. Journal of the Optical Society of America B, 32, 1731-1735(2015).

    [38] Ye H P, Qiu C W, Huang K et al. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method[J]. Laser Physics Letters, 10, 065004(2013).

    [39] Deng D M, Guo Q. Analytical vectorial structure of radially polarized light beams[J]. Optics Letters, 32, 2711-2713(2007).

    [40] Huang K, Ye H P, Teng J H et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 8, 152-157(2014).

    [41] Yang K, Xie X S, Zhou J Y. Generalized vector wave theory for ultrahigh resolution confocal optical microscopy[J]. Journal of the Optical Society of America A, 34, 61-67(2016).

    [42] Liu K, He T, Liu T et al. Effect of laser illumination conditions on focusing performance of super-oscillatory lens[J]. Acta Physica Sinica, 69, 184215(2020).

    [43] El Maklizi M, Hendawy M, Swillam M A. Super-focusing of visible and UV light using a meta surface[J]. Journal of Optics, 16, 105007(2014).

    [44] Liu T, Liu Q A, Yang S M et al. Investigation of axial and transverse focal spot sizes of Fresnel zone plates[J]. Applied Optics, 56, 3725-3729(2017).

    [45] Liu T, Wang T, Yang S M et al. Rigorous electromagnetic test of super-oscillatory lens[J]. Optics Express, 23, 32139-32148(2015).

    [46] Wu Z X, Jin Q J, Zhang S et al. Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave[J]. Optics Express, 26, 7866-7875(2018).

    [47] Chen G, Li Y Y, Wang X Y et al. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array[J]. IEEE Photonics Technology Letters, 28, 335-338(2016).

    [48] Chen G, Zhang K, Yu A P et al. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light[J]. Optics Express, 24, 11002-11008(2016).

    [49] Wen Z Q, He Y H, Li Y Y et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express, 22, 22163-22171(2014).

    [50] Chen G, Wen Z Q, Qiu C W. Superoscillation: from physics to optical applications[J]. Light: Science & Applications, 8, 56(2019).

    [51] Huang F M, Chen Y F, Garcia de Abajo F J et al. Optical super-resolution through super-oscillations[J]. Journal of Optics A: Pure and Applied Optics, 9, S285-S288(2007).

    [52] Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 15, 094008(2013).

    [53] Berry M V. Evanescent and real waves in quantum billiards and Gaussian beams[J]. Journal of Physics A: Mathematical and General, 27, L391-L398(1994).

    [54] Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and General, 39, 6965-6977(2006).

    [55] Berry M V, Dennis M R. Natural superoscillations in monochromatic waves in D dimensions[J]. Journal of Physics A: Mathematical and Theoretical, 42, 022003(2009).

    [56] Berry M V, Shukla P. Pointer supershifts and superoscillations in weak measurements[J]. Journal of Physics A: Mathematical and Theoretical, 45, 015301(2012).

    [57] Berry M V. A note on superoscillations associated with Bessel beams[J]. Journal of Optics, 15, 044006(2013).

    [58] Berry M V. Exact nonparaxial transmission of subwavelength detail using superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 46, 205203(2013).

    [59] Berry M V, Moiseyev N. Superoscillations and supershifts in phase space: Wigner and Husimi function interpretations[J]. Journal of Physics A: Mathematical and Theoretical, 47, 315203(2014).

    [60] Berry M V, Morley-Short S. Representing fractals by superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 50, 22LT01(2017).

    [61] Berry M V. Suppression of superoscillations by noise[J]. Journal of Physics A: Mathematical and Theoretical, 50, 025003(2017).

    [62] Liu D M, Zhang Y, Wen J M et al. Diffraction interference induced superfocusing in nonlinear Talbot effect[J]. Scientific Reports, 4, 6134(2014).

    [63] Huang F M, Zheludev N, Chen Y F et al. Focusing of light by a nanohole array[J]. Applied Physics Letters, 90, 091119(2007).

    [64] Huang K, Qin F, Liu H et al. Planar diffractive lenses: fundamentals, functionalities, and applications[J]. Advanced Materials, 30, 1704556(2018).

    [65] Wu Z X, Jin Q J, Chen G. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electronic Engineering, 45, 170660(2018).

    [66] Hu Y W, Wang S W, Jia J H et al. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Advanced Photonics, 3, 045002(2021).

    [67] Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 20, 266-267(1972).

    [68] Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 60, 1107-1109(1972).

    [69] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).

    [70] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 91, 233901(2003).

    [71] Yang L X, Xie X S, Wang S C et al. Minimized spot of annular radially polarized focusing beam[J]. Optics Letters, 38, 1331-1333(2013).

    [72] Xie X S, Chen Y Z, Yang K et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 113, 263901(2014).

    [73] Guan G R, Zhang A Q, Xie X S et al. Far-field and non-intrusive optical mapping of nanoscale structures[J]. Nanomaterials, 12, 2274(2022).

    [74] Vicente O C, Caloz C. Bessel beams: a unified and extended perspective[J]. Optica, 8, 451-457(2021).

    [75] Fahrbach F O, Simon P, Rohrbach A. Microscopy with self-reconstructing beams[J]. Nature Photonics, 4, 780-785(2010).

    [76] Broky J, Siviloglou G A, Dogariu A et al. Self-healing properties of optical Airy beams[J]. Optics Express, 16, 12880-12891(2008).

    [77] Greenfield E, Schley R, Hurwitz I et al. Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams[J]. Optics Express, 21, 13425-13435(2013).

    [78] Penciu R S, Makris K G, Efremidis N K. Nonparaxial abruptly autofocusing beams[J]. Optics Letters, 41, 1042-1045(2016).

    [79] Zhang S H, Zhou J H, Zhong M C et al. Nonparaxial structured vectorial abruptly autofocusing beam[J]. Optics Letters, 44, 2843-2846(2019).

    [80] Sun C, Deng D M, Wang G H et al. Abruptly autofocusing properties of radially polarized circle Pearcey vortex beams[J]. Optics Communications, 457, 124690(2020).

    [81] Wang T T, Wang X A, Kuang C F et al. Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings[J]. Applied Physics Letters, 97, 231105(2010).

    [82] Rogers E T F, Lindberg J, Roy T et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 11, 432-435(2012).

    [83] Rogers E T F, Savo S, Lindberg J et al. Super-oscillatory optical needle[J]. Applied Physics Letters, 102, 181109(2013).

    [84] Roy T, Rogers E T F, Yuan G H et al. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 104, 231109(2014).

    [85] Zhang S, Chen H, Wu Z X et al. Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression[J]. Optics Express, 25, 27104-27118(2017).

    [86] Qin F, Huang K, Wu J F et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 29, 1602721(2017).

    [87] Hao X, Kuang C F, Wang T T et al. Phase encoding for sharper focus of the azimuthally polarized beam[J]. Optics Letters, 35, 3928-3930(2010).

    [88] Khonina S N, Golub I. Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation[J]. Journal of the Optical Society of America A, 29, 1470-1474(2012).

    [89] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 5, 86-92(2018).

    [90] Xiong Y Q, Li, K, Wang R et al. Photon sieve: research progress and applications prospects in space[J]. Vacuum and Cryogenics, 28, 623-631(2011).

    [91] Jia J, Xie C Q. Phase zone photon sieve[J]. Chinese Physics B, 18, 183-188(2009).

    [92] Jiang W B, Hu S, Zhao L X et al. Design and application of phase photon sieve[J]. Optik, 121, 637-640(2010).

    [93] Hou C L. Novel diffractive optical element: binary photon sieve[J]. Optical Engineering, 50, 068001(2011).

    [94] Sabatyan A, Mirzaie S. Efficiency-enhanced photon sieve using Gaussian/overlapping distribution of pinholes[J]. Applied Optics, 50, 1517-1522(2011).

    [95] Tang Y, Hu S, Zhu J P et al. Design of quasi-phase photon sieve[J]. Acta Optica Sinica, 32, 1022007(2012).

    [96] Liu Y J, Liu H, Leong E S P et al. Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing[J]. Advanced Optical Materials, 2, 487-492(2014).

    [97] Fu R, Li Z L, Zheng G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 14, 886-899(2021).

    [98] Li Z Y, Yu N F. Modulation of mid-infrared light using graphene-metal plasmonic antennas[J]. Applied Physics Letters, 102, 131108(2013).

    [99] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [100] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [101] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012).

    [102] Li X, Pu M B, Zhao Z Y et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 6, 20524(2016).

    [103] Yu N F, Aieta F, Genevet P et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 12, 6328-6333(2012).

    [104] Zhang F, Cai J X, Pu M B et al. Composite-phase manipulation in optical metasurfaces[J]. Physics, 50, 300-307(2021).

    [105] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 364, eaat3100(2019).

    [106] Zhang L, Chen X Q, Liu S et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 9, 4334(2018).

    [107] Chen S Q, Li Z C, Liu W W et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 31, 1802458(2019).

    [108] Li Y, Li X, Chen L W et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 5, 1600502(2017).

    [109] Remnev M A, Klimov V V. Metasurfaces: a new look at Maxwell’s equations and new ways to control light[J]. Physics-Uspekhi, 61, 157-190(2018).

    [110] Liang H W, Lin Q L, Xie X S et al. Ultrahigh numerical aperture metalens at visible wavelengths[J]. Nano Letters, 18, 4460-4466(2018).

    [111] Yuan G H, Rogers K S, Rogers E T F et al. Far-field superoscillatory metamaterial superlens[J]. Physical Review Applied, 11, 064016(2019).

    [112] Zhang Q, Dong F L, Li H X et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Advanced Optical Materials, 8, 1901885(2020).

    [113] Sang D, Xu M F, Pu M B et al. Toward high-efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser & Photonics Reviews, 16, 2200265(2022).

    [114] Luo J, Zhao Z Y, Pu M B et al. Tight focusing of radially and azimuthally polarized light with plasmonic metalens[J]. Optics Communications, 356, 445-450(2015).

    [115] Li Y Y, Cao L Y, Wen Z Q et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Optics Letters, 44, 110-113(2018).

    [116] Wu Z X, Deng H, Li X X et al. Superoscillatory metalens for an azimuthally polarized wave with different orbital angular momentum[J]. Optical Engineering, 59, 090501(2020).

    [117] Zhou Y, Yan C, Tian P et al. A super-oscillatory step-zoom metalens for visible light[J]. Beilstein Journal of Nanotechnology, 13, 1220-1227(2022).

    Pengcheng Zheng, Xiangsheng Xie, Haowen Liang, Jianying Zhou. Small Size Optical Field Advancements for Optical Information Storage[J]. Chinese Journal of Lasers, 2023, 50(18): 1813012
    Download Citation