• High Power Laser and Particle Beams
  • Vol. 32, Issue 12, 121005 (2020)
Qiao Lu1 and qinghe Mao1、2、*
Author Affiliations
  • 1Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230026
  • 2School of Environmental Science and Optoelectronic Technology,University of Science and Technology of China, Hefei 230026
  • show less
    DOI: 10.11884/HPLPB202032.200210 Cite this Article
    Qiao Lu, qinghe Mao. Two key frontier issues on picosecond pulses generated by mode-locked fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121005 Copy Citation Text show less
    References

    [1] Zhao Z, Sheehy B, Minty M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 25, 8138-8143(2017).

    [2] Yang K, Zheng S, Wu Y. Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy[J]. Optics Express, 26, 17519-17528(2018).

    [3] Phillips K C, Gandhi H H, Mazur E. Ultrafast laser processing of materials: a review[J]. Adv Opt Photon, 7, 684-712(2015).

    [4] Fattahi H, Barros H G, Gorjan M. Third-generation femtosecond technology[J]. Optica, 1, 45-63(2014).

    [6] Chen W, Liu B, Song Y. High pulse energy fiber/solid-slab hybrid picosecond pulse system for material processing on polycrystalline diamonds[J]. High Power Laser Science and Engineering, 6, e18(2018).

    [8] Ma P, Tao R, Huang L. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality[J]. Journal of Optics, 17, 075501(2015).

    [9] Chan H Y, Alam S U, Xu L. Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier[J]. Optics Express, 22, 21938-21943(2014).

    [10] Minasian R A. Ultra-wideband and adaptive photonic signal processing of microwave signals[J]. IEEE Journal of Quantum Electronics, 52(2016).

    [11] Kanzelmeyer S, Sayinc H, Theeg T. All-fiber based amplification of 40 ps pulses from a gain-switched laser diode[J]. Optics Express, 19, 1854-1859(2011).

    [12] Zayhowski J J, Dill C. Diode-pumped passively Q-switched picosecond microchip lasers[J]. Optics Letters, 19, 1427-1429(1994).

    [13] Wang P, Zhou S H, Lee K K. Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser[J]. Optics Communications, 114, 439-441(1995).

    [14] Nodop D, Limpert J, Hohmuth R. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime[J]. Optics Letters, 32, 2115-2117(2007).

    [15] Fu W, Wright L G, Sidorenko P. Several new directions for ultrafast fiber lasers [Invited][J]. Optics Express, 26, 9432-9463(2018).

    [16] Nelson L, Jones D, Tamura K. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B: Lasers and Optics, 65, 277-294(1997).

    [17] Haus H A, Tamura K, Nelson L E. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment[J]. IEEE Journal of Quantum Electronics, 31, 591-598(1995).

    [18] Ilday F O, Buckley J R, Clark W G. Self-similar evolution of parabolic pulses in a laser[J]. Phys Rev Lett, 92, 213902(2004).

    [19] Chong A, Renninger W H, Wise F W. Environmentally stable all-normal-dispersion femtosecond fiber laser[J]. Optics Letters, 33, 1071-1073(2008).

    [20] Liu Z, Ziegler Z M, Wright L G. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017).

    [21] Chong A, Wright L G, Wise F W. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress[J]. Reports on Progress in Physics, 78(2015).

    [22] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 6, 84-92(2012).

    [23] Sidorenko P, Fu W, Wright L G. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 43, 2672-2675(2018).

    [24] Sidenko P, Fu W, Wright L G, et al. Selfseeded highpower Mamyshev oscillat[C]Proceedings of the Conference on Lasers ElectroOptics. 2018.

    [25] Renninger W H, Chong A, Wise F W. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 389-398(2012).

    [26] Renninger W, Chong A, Wise F. Dissipative solitons in normal-dispersion fiber lasers[J]. Physical Review A, 77, 023814(2008).

    [27] Turchinovich D, Liu X, Laegsgaard J. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber[J]. Optics Express, 16, 14004-14014(2008).

    [28] Deslandes P, Perrin M, Saby Y J. Picosecond to femtosecond pulses from high power self mode–locked ytterbium rod-type fiber laser[J]. Optics Express, 21, 10731-10738(2013).

    [29] Szczepanek J, Kardas T M, Michalska M. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror[J]. Optics Letters, 40, 3500-3503(2015).

    [30] Agnesi A, Carral, Marco C. Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm[J]. IEEE Photonics Technology Letters, 24, 927(2012).

    [31] Anderson D, Desaix M, Lisak M. Wave breaking in nonlinear-optical fibers[J]. J Opt Soc Am B, 9, 1358-1361(1992).

    [32] Lu Q, Ma J, Duan D. Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser[J]. Optics Express, 27, 2809-2816(2019).

    [34] Agnesi A, Carra L, Pirzio F. Low repetition rate, hybrid fiber/solid-state, 1064 nm picosecond master oscillator power amplifier laser system[J]. J Opt Soc Am B, 30, 2960-2965(2013).

    [35] Chen Y, Liu K, Yang J. 8.2 mJ, 324 MW, 5 kHz picosecond MOPA system based on Nd: YAG slab amplifiers[J]. Journal of Optics, 18, 075503(2016).

    [36] Hönninger C, Paschotta R, Morier-Genoud F. Q-switching stability limits of continuous-wave passive mode locking[J]. J Opt Soc Am B, 16, 46-56(1999).

    [37] Fattahi H, Schwarz A, Geng X T. Decoupling chaotic amplification and nonlinear phase in high-energy thin-disk amplifiers for stable OPCPA pumping[J]. Optics Express, 22, 31440-31447(2014).

    [38] Agnesi A, Carrà L, Piccoli R. Nd: YVO4 amplifier for ultrafast low-power lasers[J]. Optics Letters, 37, 3612-3614(2012).

    [39] Chang C L, Krogen P, Hong K H. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier[J]. Optics Express, 23, 10132-10144(2015).

    [40] Délen X, Balembois F, Georges P. Design of a high gain single stage and single pass Nd: YVO4 passive picosecond amplifier[J]. J Opt Soc Am B, 29, 2339-2346(2012).

    [41] Bale B G, Kutz J N, Chong A. Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers[J]. J Opt Soc Am B, 25, 1763-1670(2008).

    [42] Baumgartl M, Abreu-Afonso J, Díez A. Environmentally stable picosecond Yb fiber laser with low repetition rate[J]. Applied Physics B, 111, 39-43(2013).

    [43] Liu X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser[J]. Physical Review A, 81, 023811(2010).

    [44] Chong A, Renninger W H, Wise F W. Properties of normal-dispersion femtosecond fiber lasers[J]. J Opt Soc Am B, 25, 140-148(2008).

    [45] Chong A. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 32, 2408-2410(2007).

    [46] Giant-chirp oscillators for short-pulse fiber amplifiers[J]. Optics Letters, 33, 3025-3027(2008).

    [47] Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 37, 253-255(2012).

    [48] High-power picosecond fiber amplifier based on nonlinear spectral compression[J]. Optics Letters, 30, 714-716(2005).

    [49] Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier[J]. J Opt Soc Am B, 31, 33-37(2014).

    [50] Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser[J]. Optics Express, 24, 1347-1357(2016).

    [51] Environmentally stable pulse energy-tunable picosecond fiber laser[J]. IEEE Photonics Technology Letters, 29, 150-153(2016).

    [52] Simple guidelines to predict self-phase modulation patterns[J]. J Opt Soc Am B, 35, 3143-3152(2018).

    [53] Griffiths P R, Haseth J A D. Fourier Transfm infrared spectrometry[M]. New Jersey: Wiley Press. 2006.

    [54] Self-phase modulation compensated by positive dispersion in chirped-pulse systems[J]. Optics Express, 17, 4997-5007(2009).

    [55] Agrawal G. Nonlinear fiber optics[M]. Boston: Academic Press. 2013.

    [56] Frequency broadening by self-phase modulation in optical fibers[J]. J Opt Soc Am B, 2, 1318-1319(1985).

    [57] High fidelity picosecond pulse fiber amplification with inter-stage notch filter[J]. Journal of Lightwave Technology, 1-1(2020).

    Qiao Lu, qinghe Mao. Two key frontier issues on picosecond pulses generated by mode-locked fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121005
    Download Citation