• Photonics Research
  • Vol. 12, Issue 10, 2376 (2024)
Alekhya Ghosh1,2,†, Arghadeep Pal1,2,†, Lewis Hill1, Graeme N. Campbell1,3..., Toby Bi1,2, Yaojing Zhang1, Abdullah Alabbadi1,2, Shuangyou Zhang1,2 and Pascal Del’Haye1,2,*|Show fewer author(s)
Author Affiliations
  • 1Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
  • 2Department of Physics, Friedrich Alexander University Erlangen-Nuremberg, D-91058 Erlangen, Germany
  • 3Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
  • show less
    DOI: 10.1364/PRJ.524823 Cite this Article Set citation alerts
    Alekhya Ghosh, Arghadeep Pal, Lewis Hill, Graeme N. Campbell, Toby Bi, Yaojing Zhang, Abdullah Alabbadi, Shuangyou Zhang, Pascal Del’Haye, "Controlled light distribution with coupled microresonator chains via Kerr symmetry breaking," Photonics Res. 12, 2376 (2024) Copy Citation Text show less
    References

    [1] J. Bernstein. Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that. Rev. Mod. Phys., 46, 7-48(1974).

    [2] C. Chen, G. Bornet, M. Bintz. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature, 616, 691-695(2023).

    [3] F. Ares, S. Murciano, P. Calabrese. Entanglement asymmetry as a probe of symmetry breaking. Nat. Commun., 14, 2036(2023).

    [4] W. Ning, R.-H. Zheng, J.-H. Lü. Experimental observation of spontaneous symmetry breaking in a quantum phase transition. Sci. China Phys. Mech. Astron., 67, 220312(2024).

    [5] H. Arodz, J. Dziarmaga, W. Zurek. Patterns of Symmetry Breaking(2011).

    [6] M. He, Y. Li, J. Cai. Symmetry breaking in twisted double bilayer graphene. Nat. Phys., 17, 26-30(2021).

    [7] G. Barbillon, A. Ivanov, A. K. Sarychev. Applications of symmetry breaking in plasmonics. Symmetry, 12, 896(2020).

    [8] Y. Lin, D. Wang, J. Hu. Engineering symmetry-breaking nanocrescent arrays for nanolasing. Adv. Funct. Mater., 29, 1904157(2019).

    [9] P. Del’Haye, A. Schliesser, O. Arcizet. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [10] J. N. Kemal, P. Marin-Palomo, M. Karpov. Chip-based frequency combs for wavelength-division multiplexing applications. Optical Fiber Telecommunications VII, 51-102(2020).

    [11] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [12] S. B. Papp, K. Beha, P. Del’Haye. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).

    [13] H. Yan, A. Ghosh, A. Pal. Real-time imaging of standing-wave patterns in microresonators. Proc. Natl. Acad. Sci. USA, 121, e2313981121(2024).

    [14] A. Kaplan, P. Meystre. Directionally asymmetrical bistability in a symmetrically pumped nonlinear ring interferometer. Opt. Commun., 40, 229-232(1982).

    [15] E. M. Wright, P. Meystre, W. J. Firth. Theory of the nonlinear Sagnac effect in a fiber-optic gyroscope. Phys. Rev. A, 32, 2857-2863(1985).

    [16] M. T. M. Woodley, J. M. Silver, L. Hill. Universal symmetry-breaking dynamics for the Kerr interaction of counterpropagating light in dielectric ring resonators. Phys. Rev. A, 98, 053863(2018).

    [17] L. Hill, G.-L. Oppo, M. T. M. Woodley. Effects of self- and cross-phase modulation on the spontaneous symmetry breaking of light in ring resonators. Phys. Rev. A, 101, 013823(2020).

    [18] L. Del Bino, J. M. Silver, S. L. Stebbings. Symmetry breaking of counter-propagating light in a nonlinear resonator. Sci. Rep., 7, 43142(2017).

    [19] Q.-T. Cao, H. Wang, C.-H. Dong. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 118, 033901(2017).

    [20] M. T. M. Woodley, L. Hill, L. Del Bino. Self-switching Kerr oscillations of counterpropagating light in microresonators. Phys. Rev. Lett., 126, 043901(2021).

    [21] G. N. Campbell, S. Zhang, L. Del Bino. Counterpropagating light in ring resonators: switching fronts, plateaus, and oscillations. Phys. Rev. A, 106, 043507(2022).

    [22] A. D. White, G. H. Ahn, K. V. Gasse. Integrated passive nonlinear optical isolators. Nat. Photonics, 17, 143-149(2023).

    [23] L. D. Bino, J. M. Silver, M. T. M. Woodley. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica, 5, 279-282(2018).

    [24] N. Moroney, L. D. Bino, M. T. M. Woodley. Logic gates based on interaction of counterpropagating light in microresonators. J. Lightwave Technol., 38, 1414-1419(2020).

    [25] J. Geddes, J. Moloney, E. Wright. Polarisation patterns in a nonlinear cavity. Opt. Commun., 111, 623-631(1994).

    [26] F. Copie, M. T. Woodley, L. Del Bino. Interplay of polarization and time-reversal symmetry breaking in synchronously pumped ring resonators. Phys. Rev. Lett., 122, 013905(2019).

    [27] B. Garbin, J. Fatome, G.-L. Oppo. Asymmetric balance in symmetry breaking. Phys. Rev. Res, 2, 023244(2020).

    [28] T. Huang, H. Zheng, G. Xu. Coexistence of nonlinear states with different polarizations in a Kerr resonator. Phys. Rev. A, 109, 013503(2024).

    [29] J. Fatome, E. Lucas, B. Kibler. Observation of polarization faticons in a fibre Kerr resonator. European Quantum Electronics Conference, pd_2_7(2023).

    [30] N. Moroney, L. Del Bino, S. Zhang. A Kerr polarization controller. Nat. Commun., 13, 398(2022).

    [31] L. Quinn, G. Xu, Y. Xu. Random number generation using spontaneous symmetry breaking in a Kerr resonator. Opt. Lett., 48, 3741-3744(2023).

    [32] G. Xu, A. U. Nielsen, B. Garbin. Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator. Nat. Commun., 12, 4023(2021).

    [33] L. Hill, E.-M. Hirmer, G. Campbell. Symmetry broken vectorial Kerr frequency combs from Fabry-Pérot resonators. Commun. Phys., 7, 82(2024).

    [34] G. N. Campbell, L. Hill, P. Del’Haye. Dark temporal cavity soliton pairs in Fabry-Pérot resonators with normal dispersion and orthogonal polarizations. Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), ef_p_3(2023).

    [35] M.-A. Miri, E. Verhagen, A. Alù. Optomechanically induced spontaneous symmetry breaking. Phys. Rev. A, 95, 053822(2017).

    [36] L. Hill, G.-L. Oppo, P. Del’Haye. Multi-stage spontaneous symmetry breaking of light in Kerr ring resonators. Commun. Phys., 6, 208(2023).

    [37] A. Ghosh, L. Hill, G.-L. Oppo. Four-field symmetry breakings in twin-resonator photonic isomers. Phys. Rev. Res., 5, L042012(2023).

    [38] J. Mai, X. Huang, X. Guo. Spontaneous symmetry breaking of coupled Fabry–Pérot nanocavities. Commun. Phys., 7, 223(2024).

    [39] A. Tusnin, A. Tikan, K. Komagata. Nonlinear dynamics and Kerr frequency comb formation in lattices of coupled microresonators. Commun. Phys., 6, 317(2023).

    [40] S. Mittal, G. Moille, K. Srinivasan. Topological frequency combs and nested temporal solitons. Nat. Phys., 17, 1169-1176(2021).

    [41] C. J. Flower, M. Jalali Mehrabad, L. Xu. Observation of topological frequency combs. Science, 384, 1356-1361(2024).

    [42] A. Ghosh, A. Pal, S. Zhang. Phase symmetry breaking of counterpropagating light in microresonators for switches and logic gates. arXiv(2024).

    [43] R. D. D. Bitha, A. Giraldo, N. G. Broderick. Bifurcation analysis of complex switching oscillations in a Kerr microring resonator. Phys. Rev. E, 108, 064204(2023).

    [44] G. Xu, L. Hill, J. Fatome. Breathing dynamics of symmetry-broken temporal cavity solitons in Kerr ring resonators. Opt. Lett., 47, 1486-1489(2022).

    [45] S. Zhang, T. Bi, I. Harder. Low-temperature sputtered ultralow-loss silicon nitride for hybrid photonic integration. Laser Photonics Rev., 18, 2300642(2024).

    [46] L. A. Lugiato, R. Lefever. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett., 58, 2209-2211(1987).

    [47] A. Pal, A. Ghosh, S. Zhang. Machine learning assisted inverse design of microresonators. Opt. Express, 31, 8020-8028(2023).

    [48] Y. Li, S.-W. Huang, B. Li. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl., 9, 52(2020).

    [49] S. Fujii, T. Tanabe. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics, 9, 1087-1104(2020).

    [50] A. Pal, A. Ghosh, S. Zhang. Linear and nonlinear coupling of twin-resonators with Kerr nonlinearity. arXiv(2024).

    [51] S. A. Miller, Y. Okawachi, S. Ramelow. Tunable frequency combs based on dual microring resonators. Opt. Express, 23, 21527-21540(2015).

    Alekhya Ghosh, Arghadeep Pal, Lewis Hill, Graeme N. Campbell, Toby Bi, Yaojing Zhang, Abdullah Alabbadi, Shuangyou Zhang, Pascal Del’Haye, "Controlled light distribution with coupled microresonator chains via Kerr symmetry breaking," Photonics Res. 12, 2376 (2024)
    Download Citation