• Matter and Radiation at Extremes
  • Vol. 9, Issue 4, 043002 (2024)
Zhan Sui1,a) and Ke Lan2
Author Affiliations
  • 1Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • show less
    DOI: 10.1063/5.0216435 Cite this Article
    Zhan Sui, Ke Lan. Driver at 10 MJ and 1 shot/30 min for inertial confinement fusion at high gain: Efficient, compact, low-cost, low laser–plasma instabilities, beam color selectable from 2ω/3ω/4ω, applicable to multiple laser fusion schemes[J]. Matter and Radiation at Extremes, 2024, 9(4): 043002 Copy Citation Text show less
    References

    [1] H.Abu-Shawarebet?al.. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett., 132, 065102(2024).

    [2] for more information about the new fusion yield record of 5.2 MJ on the NIF.

    [3] S.Atzeni, J.Meyer-ter-Vehn. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Dense Plasma Physics(2004).

    [4] K.Lan. Dream fusion in octahedral spherical hohlraum. Matter Radiat. Extremes, 7, 055701(2022).

    [5] 2015 review of the inertial confinement fusion and high energy density science portfolio: Volume I. Lasers Indirect Drive Input to NNSA 2020 Report, LLNL-TR-810573, DOE/NA-0040(2016).

    [6] J. M.Auerbach, C. A.Haynam, P. J.Wegner et al. National Ignition Facility laser performance status. Appl. Opt, 46, 3276-3203(2007).

    [7] K. R.Maneset?al.. Damage mechanisms avoided or managed for NIF large optics. Fusion Sci. Technol., 69, 146-249(2016).

    [8] K.Lan, K.Lan, K.Lanet?al.. Novel spherical hohlraum with cylindrical laser entrance holes and shields. Phys. Plasmas, 21, 090704(2014).

    [9] Y.Guoet?al.. Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle. Matter Radiat. Extremes, 8, 035902(2023).

    [10] M. L.Spaeth et al. National Ignition Facility laser system performance. Fusion Sci. Technol, 69, 366-394(2016).

    [11] E. M.Campbell, S.Craxton, W. Y.Wang. A new beam configuration to support both spherical hohlraums and symmetric direct drive.

    [12] M.Marangola. Optimization of direct drive designs for a proposed dual direct/indirect drive laser.

    [13] D. A.Callanhan, S. W.Haan, J. D.Lindl et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001(2011).

    [14] Y.-H.Chen, K.Lan, G.Ren et al. Octahedral spherical Hohlraum for Rev. 6 NIF beryllium capsule. Phys. Plasmas, 25, 102701(2018).

    [15] K.Lan, X.Qiao. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion. Phys. Rev. Lett, 126, 185001(2021).

    [16] K.Lan, P.Song. Foam Au driven by 4ω–2ω ignition laser pulse for inertial confinement fusion. Phys. Plasmas, 24, 052707(2017).

    [17] E. M.Campbell, Y.Chen, K.Lan, W.Zheng. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light. Phys. Plasmas, 25, 022702(2018).

    Zhan Sui, Ke Lan. Driver at 10 MJ and 1 shot/30 min for inertial confinement fusion at high gain: Efficient, compact, low-cost, low laser–plasma instabilities, beam color selectable from 2ω/3ω/4ω, applicable to multiple laser fusion schemes[J]. Matter and Radiation at Extremes, 2024, 9(4): 043002
    Download Citation