• High Power Laser and Particle Beams
  • Vol. 33, Issue 11, 111003 (2021)
Mengqiu Fan1、4, Shengtao Lin2, han Wu3, Wanguo Zheng1、*, and Zinan Wang2、*
Author Affiliations
  • 1Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
  • 2Key Laboratory of Optical Fiber Sensing and Communications of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 3College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
  • 4Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202133.210306 Cite this Article
    Mengqiu Fan, Shengtao Lin, han Wu, Wanguo Zheng, Zinan Wang. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33(11): 111003 Copy Citation Text show less

    Abstract

    The recent research progress of random distributed feedback fiber lasers in the time-frequency-spatial domain is systemically reviewed in this paper. The factors influencing the time-frequency-spatial dynamic characteristics of random distributed feedback fiber lasers are analyzed and summarized. Finally, the prospects of random distributed feedback fiber lasers used in high-power laser driving facility are put forward, and the potential research area in future is discussed.
    $ \frac{{{\rm{d}}P_{\rm{p}}^ \pm }}{{{\rm{d}} {\textit{z}} }} = \mp {\alpha _{\rm{p}}}P_{\rm{p}}^ \pm \mp g\frac{{{f_{\rm{p}}}}}{{{f_{\rm{l}}}}}P_{\rm{p}}^ \pm \left[ {P_{\rm{l}}^ + + P_{\rm{l}}^ - + 4h{f_{\rm{l}}}\Delta f\left( {1 + \frac{1}{{{{\rm{e}}^{h({f_{\rm{p}}} - {f_{\rm{l}}})/{K_{\rm{B}}}T}} - 1}}} \right)} \right] \pm {\varepsilon _{\rm{p}}}P_{\rm{p}}^ \pm $(1)

    View in Article

    $ \begin{gathered} \frac{{{\rm{d}}P_{\rm{l}}^ \pm }}{{{\rm{d}} {\textit{z}}}} = \mp {\alpha _{\rm{l}}}P_{\rm{l}}^ \pm \pm g\left[ {P_{\rm{l}}^ \pm + 2h{f_{\rm{l}}}\Delta f\left( {1 + \frac{1}{{{{\rm{e}}^{h({f_{\rm{p}}} - {f_{\rm{l}}})/{K_{\rm{B}}}T}} - 1}}} \right)} \right]\left( {P_{\rm{p}}^ + + P_{\rm{p}}^ - } \right) \pm {\varepsilon _{\rm{l}}}P_{\rm{l}}^ \mp \hfill \\ \hfill \\ \end{gathered} $(2)

    View in Article

    $ \begin{aligned} & \frac{{\partial A_{\rm{p}}^ \pm }}{{\partial {\textit{z}} }} - \frac{1}{{{v_{{\rm{gs}}}}}}\frac{{\partial A_{\rm{p}}^ \pm }}{{\partial t}} + \frac{i}{2}{\beta _{2{\rm{p}}}}\frac{{{\partial ^2}A_{\rm{p}}^ \pm }}{{\partial {t^2}}} + \frac{{{\alpha _{\rm{p}}}}}{2}A_{\rm{p}}^ \pm = i{\gamma _{\rm{p}}}{\left| {A_{\rm{p}}^ \pm } \right|^2}A_{\rm{p}}^ \pm - \frac{{{g_{\rm{p}}}(\omega )}}{2}\left( {\left\langle {{{\left| {A_{\rm{s}}^ \pm } \right|}^2}} \right\rangle + \left\langle {{{\left| {A_{\rm{s}}^ \mp } \right|}^2}} \right\rangle } \right)A_{\rm{p}}^ \pm \\ & \frac{{\partial A_{\rm{s}}^ \pm }}{{\partial {\textit{z}} }} + \frac{i}{2}{\beta _{2{\rm{s}}}}\frac{{{\partial ^2}A_{\rm{s}}^ \pm }}{{\partial {t^2}}} + \frac{{{\alpha _{\rm{s}}}}}{2}A_{\rm{s}}^ \pm - \frac{{\varepsilon (\omega )}}{2}A_{\rm{s}}^ \pm = i{\gamma _{\rm{s}}}{\left| {A_{\rm{s}}^ \pm } \right|^2}A_{\rm{s}}^ \pm + \frac{{{g_{\rm{s}}}(\omega )}}{2}\left( {\left\langle {{{\left| {A_{\rm{p}}^ \pm } \right|}^2}} \right\rangle + \left\langle {{{\left| {A_{\rm{p}}^ \mp } \right|}^2}} \right\rangle } \right)A_{\rm{s}}^ \pm \end{aligned} $(3)

    View in Article

    $ C = \frac{\delta }{{\left\langle I \right\rangle }} \propto \frac{1}{{\sqrt m }} $(4)

    View in Article

    Mengqiu Fan, Shengtao Lin, han Wu, Wanguo Zheng, Zinan Wang. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33(11): 111003
    Download Citation