• Chinese Optics Letters
  • Vol. 23, Issue 6, 063603 (2025)
Tiegang Lin1, Ben Niu1, Furong Liu1, Xianglin Ye2..., Fan Fan2,* and Yufang Liu1,**|Show fewer author(s)
Author Affiliations
  • 1Henan Key Laboratory of Infrared Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
  • 2Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.3788/COL202523.063603 Cite this Article Set citation alerts
    Tiegang Lin, Ben Niu, Furong Liu, Xianglin Ye, Fan Fan, Yufang Liu, "Generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere from cholesteric liquid crystals," Chin. Opt. Lett. 23, 063603 (2025) Copy Citation Text show less
    References

    [1] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1980).

    [2] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115(1936).

    [3] L. Allen, M. W. Beijersbergen, R. Spreeuw et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [4] A. O’neil, I. MacVicar, L. Allen et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601(2002).

    [5] X. Yi, Y. Liu, X. Ling et al. Hybrid-order Poincaré sphere. Phys. Rev. A, 91, 023801(2015).

    [6] H. Poincare. Theorie mathematique de la lumiere (Gauthiers-Villars, Paris 1892) Vol. 2. J. Opt. Soc. Am., 44, 12(1954).

    [7] S. Wang, S. Wen, Z.-L. Deng et al. Metasurface-based solid Poincaré sphere polarizer. Phys. Rev. Lett., 130, 123801(2023).

    [8] L. Feng, Y. Li, S. Wu et al. All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere. Photon. Res., 8, 1268(2020).

    [9] G. Milione, H. Sztul, D. Nolan et al. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [10] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1(2009).

    [11] Y. Shen, X. Wang, Z. Xie et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [12] Y. Zhang, J. Shen, C. Min et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett., 18, 5538(2018).

    [13] X. Hao, C. Kuang, T. Wang et al. Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett., 35, 3928(2010).

    [14] E. Wang, L. Shi, J. Niu et al. Multichannel spatially nonhomogeneous focused vector vortex beams for quantum experiments. Adv. Opt. Mater., 7, 1801415(2019).

    [15] J. Tang, Y. Ming, Z.-X. Chen et al. Entanglement of photons with complex spatial structure in Hermite-Laguerre-Gaussian modes. Phys. Rev. A, 94, 012313(2016).

    [16] Y. Chen, K.-Y. Xia, W.-G. Shen et al. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).

    [17] X. Ling, Z. Zhang, Z. Dai et al. Photonic spin-Hall effect at generic interfaces. Laser Photonics Rev., 17, 2200783(2023).

    [18] F. Feng, G. Si, C. Min et al. On-chip plasmonic spin-hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl., 9, 95(2020).

    [19] Y. Zhang, P. Li, S. Liu et al. Unveiling the photonic spin hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Opt. Lett., 40, 4444(2015).

    [20] F. Yue, D. Wen, J. Xin et al. Vector vortex beam generation with a single plasmonic metasurface. ACS photonics, 3, 1558(2016).

    [21] Y. Bao, J. Ni, C.-W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2020).

    [22] M. Liu, P. Huo, W. Zhu et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nature Commun., 12, 2230(2021).

    [23] Z. Liu, Y. Liu, Y. Ke et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photonics Res., 5, 15(2016).

    [24] K. Zeng, S. He, X. Wang et al. Generation of vector vortex beams based on the optical integration of dynamic phase and geometric phase. Photonics, 10, 214(2023).

    [25] T. Wang, S. Fu, F. He et al. Generation of perfect polarization vortices using combined gratings in a single spatial light modulator. Appl. Opt., 56, 7567(2017).

    [26] J. Liu, X. Chen, Y. He et al. Generation of arbitrary cylindrical vector vortex beams with cross-polarized modulation. Results Phys., 19, 103455(2020).

    [27] P. Li, Y. Zhang, S. Liu et al. Generation of perfect vectorial vortex beams. Opt. Lett., 41, 2205(2016).

    [28] R. Wang, S. He, S. Chen et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere. Opt. Lett., 43, 3570(2018).

    [29] S. Lou, Y. Zhou, Y. Yuan et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device. Opt. Express, 27, 8596(2019).

    [30] X. Zhou, Y. Yuan, Z. Zhu et al. Electrically-controlled generation and switching of arbitrary vector vortex beams on multiple hybrid-order Poincaré spheres based on liquid crystal devices. Liq. Cryst., 50, 2010(2023).

    [31] T. Lin, Y. Zhou, Y. Yuan et al. Transflective spin-orbital angular momentum conversion device by three-dimensional multilayer liquid crystalline materials. Opt. Express, 26, 29244(2018).

    [32] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [33] B. Piccirillo, V. D’Ambrosio, S. Slussarenko et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl. Phys. Lett., 97, 241104(2010).

    [34] M. Rafayelyan, G. Agez, E. Brasselet. Ultrabroadband gradient-pitch Bragg-Berry mirrors. Phys. Rev. A, 96, 043862(2017).

    [35] J. Kobashi, H. Yoshida, M. Ozaki. Polychromatic optical vortex generation from patterned cholesteric liquid crystals. Phys. Rev Lett., 116, 253903(2016).

    [36] M. Rafayelyan, G. Tkachenko, E. Brasselet. Reflective spin-orbit geometric phase from chiral anisotropic optical media. Phys. Rev. Lett., 116, 253902(2016).

    [37] M. Rafayelyan, E. Brasselet. Bragg-Berry mirrors: reflective broadband q-plates. Opt. Lett., 41, 3972(2016).

    [38] P. Chen, L.-L. Ma, W. Duan et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [39] Q. Chen, X. Wang, C. Xu et al. Soft mesocrystal enabled multi-degree light modulation. Laser Photonics Rev., 18, 2301283(2024).

    [40] R. Barboza, U. Bortolozzo, M. G. Clerc et al. Berry phase of light under Bragg reflection by chiral liquid-crystal media. Phys. Rev. Lett., 117, 053903(2016).

    [41] J. Kobashi, H. Yoshida, M. Ozaki. Planar optics with patterned chiral liquid crystals. Nat. Photonics, 10, 389(2016).

    [42] M. Rafayelyan, E. Brasselet. Spin-to-orbital angular momentum mapping of polychromatic light. Phys. Rev. Lett., 120, 213903(2018).

    [43] T. Lin, Y. Yuan, Y. Zhou et al. Bragg reflective polychromatic vector beam generation from opposite-handed cholesteric liquid crystals. Opt. Lett., 44, 2720(2019).

    [44] S. Slussarenko, A. Murauski, T. Du et al. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express, 19, 4085(2011).

    [45] Y. Liu, X. Ling, X. Yi et al. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl. Phys. Lett., 104, 191110(2014).

    [46] P. Huo, C. Zhang, W. Zhu et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 20, 2791(2020).

    Tiegang Lin, Ben Niu, Furong Liu, Xianglin Ye, Fan Fan, Yufang Liu, "Generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere from cholesteric liquid crystals," Chin. Opt. Lett. 23, 063603 (2025)
    Download Citation