• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 11, 3733 (2022)
ZHAO Wenkai*, WANG Yuchen, LI Yanchao, ZHANG Longfei, LIU Ruite, ZHOU Zhiming, ZHANG Long, and JIANG Yiguang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    ZHAO Wenkai, WANG Yuchen, LI Yanchao, ZHANG Longfei, LIU Ruite, ZHOU Zhiming, ZHANG Long, JIANG Yiguang. Research Progress on Er∶ZBLAN MidInfrared Fiber Lasers Emitting at 2.8 μm[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3733 Copy Citation Text show less
    References

    [1] JOULLI A, CHRISTOL P, BARANOV A N, et al. Midinfrared 2~5 μm heterojunction laser diodes[J]. SolidState MidInfrared Laser Sources, 2003: 161.

    [2] ZHANG H L, BIAN J T, SUN D L, et al. Er3+doped LuYSGG crystal as a potential 2.79 μm radiationresistant laser material[J]. Optics & Laser Technology, 2022, 152: 108121.

    [3] FRAYSSINOUS C, FORTIN V, BRUB J P, et al. Resonant polymer ablation using a compact 3.44 μm fiber laser[J]. Journal of Materials Processing Technology, 2018, 252: 813820.

    [4] MAES F, FORTIN V, POULAIN S, et al. Roomtemperature fiber laser at 392 μm[J]. Optica, 2018, 5(7): 761.

    [5] WANG Z H, ZHANG B, LIU J, et al. Recent developments in midinfrared fiber lasers: status and challenges[J]. Optics & Laser Technology, 2020, 132: 106497.

    [6] EDWARDS G S. Mechanisms for softtissue ablation and the development of alternative medical lasers based on investigations with midinfrared freeelectron lasers[J]. Laser & Photonics Review, 2009, 3(6): 545555.

    [7] SCHWAIGHOFER A, BRANDSTETTER M, LENDL B. Quantum cascade lasers (QCLs) in biomedical spectroscopy[J]. Chemical Society Reviews, 2017, 46(19): 59035924.

    [8] DUVAL S, BERNIER M, FORTIN V, et al. Femtosecond fiber lasers reach the midinfrared[J]. Optica, 2015, 2(7): 623.

    [9] LEINDECKER N, MARANDI A, BYER R L, et al. Octavespanning ultrafast OPO with 26~61 μm instantaneous bandwidth pumped by femtosecond Tmfiber laser[J]. Optics Express, 2012, 20(7): 7046.

    [10] PENWELL S B, WHALEYMAYDA L, TOKMAKOFF A. Singlestage MHz midIR OPA using LiGaS2 and a fiber laser pump source[J]. Optics Letters, 2018, 43(6): 13631366.

    [11] MALIS O, GMACHL C, SIVCO D L, et al. The quantum cascade laser: a versatile highpower semiconductor laser for midinfrared applications[J]. Bell Labs Technical Journal, 2005, 10(3): 199214.

    [13] JACKSON S D. Towards highpower midinfrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423431.

    [14] VODOPYANOV K L, GANIKHANOV F, MAFFETONE J P, et al. ZnGeP2 optical parametric oscillator with 3.8~12.4 μm tunability[J]. Optics Letters, 2000, 25(11): 841843.

    [15] HONG Z F, REZVANI S, ZHANG Q B, et al. Ultrafast midIR laser pulses generation via chirp manipulated optical parametric amplification[J]. Applied Sciences, 2018, 8(5): 744.

    [16] DOUILLET A, ZONDY J J. Lowthreshold, selffrequencystabilized AgGaS2 continuouswave subharmonic optical parametric oscillator[J]. Optics Letters, 1998, 23(16): 12591261.

    [17] IWAKUNI K, PORAT G, BUI T Q, et al. Phasestabilized 100 mW frequency comb near 10 μm[J]. Applied Physics B, Lasers and Optics, 2018, 124(7): 128.

    [18] LV Z, SHEN Y, ZONG N, et al. 1.53 W allsolidstate nanosecond pulsed midinfrared laser at 6.45 μm[J]. Optics Letters, 2022, 47(6): 13591362.

    [19] HEMMING A, RICHARDS J, DAVIDSON A, et al. 99 W midIR operation of a ZGP OPO at 25% duty cycle[J]. Optics Express, 2013, 21(8): 1006210069.

    [20] LIPPERT E, FONNUM H, HAAKESTAD M W. Laser source with high pulse energy at 3~5 μm and 8~12 μm based on nonlinear conversion in ZnGeP2[C]//SPIE Security+Defence. Proc SPIE 9251, Technologies for Optical Countermeasures XI; and HighPower Lasers 2014: Technology and Systems, Amsterdam, Netherlands. 2014, 9251: 6168.

    [21] ZHOU P, WANG X, MA Y, et al. Review on recent progress on midinfrared fiber lasers[J]. Laser Physics, 2012, 22(11): 17441751.

    [22] LI J F, STUART D J, CHEN M, et al. Optimized design of high power midinfrared Er3+, Pr3+codoped ZBLAN fiber laser[C]//2010 Photonics Global Conference. Orchard, Singapore. IEEE, 2010: 15.

    [23] BERNIER M, FAUCHER D, CARON N, et al. Highly stable and efficient erbiumdoped 28 μm all fiber laser[J]. Optics Express, 2009, 17(19): 16941.

    [24] ZHU X S, JAIN R. Demonstration of ≥8 Watt output from laser diode pumped midinfrared fiber lasers[C]//2006 Conference on Lasers and ElectroOptics and 2006 Quantum Electronics and Laser Science Conference. Long Beach, CA, USA. IEEE, 2006: 12.

    [25] POLLNAU M, JACKSON S D. Energy recycling versus lifetime quenching in erbiumdoped 3 μm fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(2): 162169.

    [26] GOLDING P, JACKSON S, KING T, et al. Energytransfer processes in Er3+doped and Er3+, Pr3+codoped ZBLAN glasses[J]. Physical Review B, 2000, 62: 856864.

    [27] NEWBURGH G A, DUBINSKII M. Power and efficiency scaling of Er∶ZBLAN fiber laser[J]. Laser Physics Letters, 2021, 18(9): 095102.

    [28] BRIERLEY M C, FRANCE P W. Continuous wave lasing at 2.7 μm in an erbiumdoped fluorozirconate fibre[J]. Electronics Letters, 1988, 24(15): 935.

    [29] JACKSON S D, KING T A, POLLNAU M. Diodepumped 1.7 W erbium 3 μm fiber laser[J]. Optics Letters, 1999, 24(16): 11331135.

    [30] SANDROCK T, FISCHER D, GLAS P, et al. Diodepumped 1 W Erdoped fluoride glass Mprofile fiber laser emitting at 2.8 μm[J]. Optics Letters, 1999, 24(18): 12841286.

    [31] ZHU X S, JAIN R. 10Wlevel diodepumped compact 278 μm ZBLAN fiber laser[J]. Optics Letters, 2006, 32(1): 26.

    [32] TOKITA S, MURAKAMI M, SHIMIZU S, et al. Liquidcooled 24 W midinfrared Er∶ZBLAN fiber laser[J]. Optics Letters, 2009, 34(20): 30623064.

    [33] GOYA K, UEHARA H, KONISHI D, et al. Stable 35W Er: ZBLAN fiber laser with CaF2 end caps[J]. Applied Physics Express, 2019, 12(10): 102007.

    [34] BERNIER M, FAUCHER D, VALLE R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 2007, 32(5): 454456.

    [35] FAUCHER D, BERNIER M, ANDROZ G, et al. 20 W passively cooled singlemode allfiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(7): 11041106.

    [36] FORTIN V, BERNIER M, BAH S T, et al. 30 W fluoride glass allfiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 28822885.

    [37] AYDIN Y O, FORTIN V, VALLE R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 45424545.

    [38] FRERICHS C, TAUERMANN T. Qswitched operation of laser diode pumped erbiumdoped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 1994, 30(9): 706707.

    [39] WANG J T, WEI J C, LIU W J, et al. 2.8 μm passively Qswitched Er∶ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Applied Optics, 2020, 59(29): 91659168.

    [40] YU Y J, CHEN X Y, WANG C, et al. A 200 kHz Qswitched adhesivefree bond composite Nd∶YVO4 laser using a doublecrystal RTP electrooptic modulator[J]. Chinese Physics Letters, 2012, 29(2): 024206.

    [41] SHEN Y L, WANG Y S, LUAN K P, et al. High peak power actively Qswitched midinfrared fiber lasers at 3μm[J]. Applied Physics B, 2017, 123(4): 16.

    [42] TOKITA S, MURAKAMI M, SHIMIZU S, et al. 12 W Qswitched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(15): 28122814.

    [43] SOJKA L, PAJEWSKI L, LAMRINI S, et al. Experimental investigation of actively Qswitched Er3+∶ZBLAN fiber laser operating at around 2.8 μm[J]. Sensors (Basel, Switzerland), 2020, 20(16): 4642.

    [44] SJKA L, PAJEWSKI L, LAMRINI S, et al. High peak power Qswitched Er∶ZBLAN fiber laser[J]. Journal of Lightwave Technology, 2021, 39(20): 65726578.

    [45] SHEN Y L, WANG Y S, ZHU F, et al. 200 μJ, 13 ns Er∶ZBLAN midinfrared fiber laser actively Qswitched by an electrooptic modulator[J]. Optics Letters, 2021, 46(5): 11411144.

    [46] TOKITA S, MURAKAMI M, SHIMIZU S, et al. Graphene Qswitching of a 3 μm Er∶ZBLAN fiber laser[C]//Advanced SolidState Lasers Congress. Paris. Washington, D.C.: OSA, 2013: AF2A.9.

    [47] WEI C, ZHU X S, WANG F, et al. Graphene Qswitched 2.78 μm Er3+doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 32333236.

    [48] QIN Z P, XIE G Q, ZHANG H, et al. Black phosphorus as saturable absorber for the Qswitched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 2471324718.

    [49] TANG P H, WU M, WANG Q K, et al. 2.8 μm pulsed Er3+∶ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 15731576.

    [50] SHEN Y L, WANG Y S, LUAN K P, et al. Wattlevel passively Qswitched heavily Er3+doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659.

    [51] LAI X, LI J F, LUO H Y, et al. High power passively Qswitched Er3+doped ZBLAN fiber laser at 2.8 μm based on a semiconductor saturable absorber mirror[J]. Laser Physics Letters, 2018, 15(8): 085109.

    [52] WANG S W, TANG Y L, YANG J L, et al. MoS2 Qswitched 2.8 μm Er∶ZBLAN fiber laser[J]. Laser Physics, 2019, 29(2): 025101.

    [53] WEI C, ZHU X S, NORWOOD R A, et al. Passively continuouswave modelocked Er3+doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2012, 37(18): 38493851.

    [54] HABOUCHA A, FORTIN V, BERNIER M, et al. Fiber Bragg grating stabilization of a passively modelocked 2.8 μm Er3+: fluoride glass fiber laser[J]. Optics Letters, 2014, 39(11): 32943297.

    [55] TANG P H, QIN Z P, LIU J, et al. Wattlevel passively modelocked Er3+doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 48554858.

    [56] QIN Z P, CHAI X L, XIE G Q, et al. Semiconductor saturable absorber mirror in the 3~5 μm midinfrared region[J]. Optics Letters, 2022, 47(4): 890893.

    [57] CIZMECIYAN M N, KIM J W, BAE S, et al. Graphene modelocked femtosecond Cr∶ZnSe laser at 2 500 nm[J]. Optics Letters, 2013, 38(3): 341343.

    [58] SOTOR J, SOBON G, KOWALCZYK M, et al. Ultrafast thuliumdoped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 38853888.

    [59] MAO D, SHE X Y, DU B B, et al. Erbiumdoped fiber laser passively mode locked with fewlayer WSe2/MoSe2 nanosheets[J]. Scientific Reports, 2016, 6: 23583.

    [60] MA J, XIE G Q, LV P, et al. Graphene modelocked femtosecond laser at 2 μm wavelength[J]. Optics Letters, 2012, 37(11): 20852087.

    [61] ZHU G W, ZHU X S, WANG F Q, et al. Graphene modelocked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 710.

    [62] PAWLISZEWSKA M, GE Y Q, LI Z J, et al. Fundamental and harmonic modelocking at 2.1 μm with black phosphorus saturable absorber[J]. Optics Express, 2017, 25(15): 1691616921.

    [63] QIN Z P, XIE G Q, ZHAO C J, et al. Midinfrared modelocked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 5659.

    [64] WEI C, LUO H Y, ZHANG H, et al. Passively Qswitched midinfrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108.

    [65] YAN Z Y, LI T, ZHAO J, et al. Passively Qswitched 2.85 μm Er∶Lu2O3 laser with WSe2[J]. Laser Physics Letters, 2018, 15(8): 085802.

    [66] GUO C Y, WEI J C, YAN P G, et al. Modelocked fiber laser at 2.8 μm using a chemicalvapordeposited WSe2 saturable absorber mirror[J]. Applied Physics Express, 2020, 13(1): 012013.

    [67] HU T, JACKSON S D, HUDSON D D. Ultrafast pulses from a midinfrared fiber laser[J]. Optics Letters, 2015, 40(18): 42264228.

    [68] QIN Z P, XIE G Q, GU H A, et al. Modelocked 2.8 μm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 2019, 1: 065001.

    [69] GU HONGAN, QIN Z P, XIE G Q, et al. Generation of 131 fs modelocked pulses from 2.8 μm Er∶ZBLAN fiber laser[J]. Chinese Optics Letters, 2020, 18(3): 031402.

    [70] HUANG J, PANG M, JIANG X, et al. Subtwocycle octavespanning midinfrared fiber laser[J]. Optica, 2020, 7(6): 574.

    [71] ZHOU Y C, QIN Z P, YUAN P, et al. 2MW peakpower pulses from a dispersionmanaged fluoride fiber amplifier at 2.8 μm[J]. Optics Letters, 2021, 46(20): 5104.

    [72] CUI Y F, CHEN M S, DU W Z, et al. Generation of 85 fs midIR pulses with up to 2.4 W average power using an Er∶ZBLAN fiber modelocked oscillator and a nonlinear amplifier[J]. Optics Express, 2021, 29(26): 42924.

    [73] YU L P, LIANG J H, HUANG S T, et al. Averagepower (4.13 W) 59 fs midinfrared pulses from a fluoride fiber laser system[J]. Optics Letters, 2022, 47(10): 25622565.

    [74] LIBATIQUE N J C, TAFOYA J D, VISWANATHAN N, et al. A “fieldusable” diodepumped/spl sim/120nm wavelengthtunable CW midIR fiber laser[C]//Conference on Lasers and ElectroOptics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39 (IEEE Cat. No.00CH37088). San Francisco, CA, USA. IEEE,: 548549.

    [75] ZHU X S, JAIN R. Compact 2 W wavelengthtunable Er∶ZBLAN midinfrared fiber laser[J]. Optics Letters, 2007, 32(16): 23812383.

    [76] TOKITA S, HIROKANE M, MURAKAMI M, et al. Stable 10 W Er∶ZBLAN fiber laser operating at 2.71~2.88 μm[J]. Optics Letters, 2010, 35(23): 39433945.

    [77] LIU J, HUANG B, TANG P H, et al. Volume bragg grating based tunable continuouswave and Bi2Te3 Qswitched Er3+∶ZBLAN fiber laser[C]//Conference on Lasers and ElectroOptics. San Jose, California. Washington, D.C.: OSA, 2016: AW1K.7.

    [78] WEI C, LUO H Y, SHI H X, et al. Widely wavelength tunable gainswitched Er3+doped ZBLAN fiber laser around 28 μm[J]. Optics Express, 2017, 25(8): 8816.

    [79] WANG J F, ZHU X S, NORWOOD R A, et al. Widely wavelength tunable Dy3+/Er3+ codoped ZBLAN fiber lasers[J]. Optics Express, 2021, 29(23): 38646.

    ZHAO Wenkai, WANG Yuchen, LI Yanchao, ZHANG Longfei, LIU Ruite, ZHOU Zhiming, ZHANG Long, JIANG Yiguang. Research Progress on Er∶ZBLAN MidInfrared Fiber Lasers Emitting at 2.8 μm[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3733
    Download Citation