• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036001 (2023)
Jiawei Yan* and Gianluca Geloni*
Author Affiliations
  • European XFEL, Schenefeld, Germany
  • show less
    DOI: 10.1117/1.APN.2.3.036001 Cite this Article Set citation alerts
    Jiawei Yan, Gianluca Geloni. Self-seeded free-electron lasers with orbital angular momentum[J]. Advanced Photonics Nexus, 2023, 2(3): 036001 Copy Citation Text show less
    References

    [1] L. Allen et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [2] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl., 8, 1-29(2019).

    [3] H. He et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826(1995).

    [4] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [5] A. Sit et al. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [6] D.-S. Ding et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett., 114, 050502(2015).

    [7] S. Fürhapter et al. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [8] A. Picón et al. Transferring orbital and spin angular momenta of light to atoms. New J. Phys., 12, 083053(2010).

    [9] G. De Ninno et al. Photoelectric effect with a twist. Nat. Photonics, 14, 554-558(2020).

    [10] I. P. Ivanov. Promises and challenges of high-energy vortex states collisions. Progr. Particle Nucl. Phys., 127, 103987(2022).

    [11] M. van Veenendaal, I. McNulty. Prediction of strong dichroism induced by x rays carrying orbital momentum. Phys. Rev. Lett., 98, 157401(2007).

    [12] A. Picón et al. Photoionization with orbital angular momentum beams. Opt. Express, 18, 3660-3671(2010).

    [13] A. S. Rury. Examining resonant inelastic spontaneous scattering of classical Laguerre-Gauss beams from molecules. Phys. Rev. A, 87, 043408(2013).

    [14] M. Fanciulli et al. Electromagnetic theory of helicoidal dichroism in reflection from magnetic structures. Phys. Rev. A, 103, 013501(2021).

    [15] M. Fanciulli et al. Observation of magnetic helicoidal dichroism with extreme ultraviolet light vortices. Phys. Rev. Lett., 128, 077401(2022).

    [16] M. R. McCarter et al. Antiferromagnetic real-space configuration probed by x-ray orbital angular momentum phase dichroism(2022).

    [17] J. R. Rouxel et al. Hard x-ray helical dichroism of disordered molecular media. Nat. Photonics, 16, 570-574(2022).

    [18] C. Pellegrini, A. Marinelli, S. Reiche. The physics of x-ray free-electron lasers. Rev. Mod. Phys., 88, 015006(2016).

    [19] N. Huang et al. Features and futures of x-ray free-electron lasers. Innovation, 2, 100097(2021).

    [20] P. Emma et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photonics, 4, 641-647(2010).

    [21] D. Pile. X-rays: first light from SACLA. Nat. Photonics, 5, 456-457(2011).

    [22] H.-S. Kang et al. Hard x-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics, 11, 708-713(2017).

    [23] W. Decking et al. A MHz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics, 14, 391-397(2020).

    [24] E. Prat et al. A compact and cost-effective hard x-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photonics, 14, 748-754(2020).

    [25] A. Kondratenko, E. Saldin. Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel., 10, 207-216(1980).

    [26] J. Feldhaus et al. Possible application of x-ray optical elements for reducing the spectral bandwidth of an x-ray SASE FEL. Opt. Commun., 140, 341-352(1997).

    [27] G. Geloni, V. Kocharyan, E. Saldin. A novel self-seeding scheme for hard x-ray FELs. J. Mod. Opt., 58, 1391-1403(2011).

    [28] W. Colson. The nonlinear wave equation for higher harmonics in free-electron lasers. IEEE J. Quantum Electron., 17, 1417-1427(1981).

    [29] G. Geloni et al. Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers. Nucl. Instrum. Methods Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip., 581, 856-865(2007).

    [30] E. Hemsing. Coherent photons with angular momentum in a helical afterburner. Phys. Rev. Accel. Beams, 23, 020703(2020).

    [31] J. Bahrdt et al. First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett., 111, 034801(2013).

    [32] E. Hemsing et al. First characterization of coherent optical vortices from harmonic undulator radiation. Phys. Rev. Lett., 113, 134803(2014).

    [33] P. R. Ribič et al. Extreme-ultraviolet vortices from a free-electron laser. Phys. Rev. X, 7, 031036(2017).

    [34] E. Hemsing, A. Marinelli, J. Rosenzweig. Generating optical orbital angular momentum in a high-gain free-electron laser at the first harmonic. Phys. Rev. Lett., 106, 164803(2011).

    [35] E. Hemsing et al. Coherent optical vortices from relativistic electron beams. Nat. Phys., 9, 549-553(2013).

    [36] E. Hemsing, A. Marinelli. Echo-enabled x-ray vortex generation. Phys. Rev. Lett., 109, 224801(2012).

    [37] P. R. Ribič, D. Gauthier, G. De Ninno. Generation of coherent extreme-ultraviolet radiation carrying orbital angular momentum. Phys. Rev. Lett., 112, 203602(2014).

    [38] N. Huang, H. Deng. Generating x-rays with orbital angular momentum in a free-electron laser oscillator. Optica, 8, 1020-1023(2021).

    [39] A. G. Peele et al. Observation of an x-ray vortex. Opt. Lett., 27, 1752-1754(2002).

    [40] F. Seiboth et al. Refractive hard x-ray vortex phase plates. Opt. Lett., 44, 4622-4625(2019).

    [41] A. Sakdinawat, Y. Liu. Soft-x-ray microscopy using spiral zone plates. Opt. Lett., 32, 2635-2637(2007).

    [42] J. Vila-Comamala, A. Sakdinawat, M. Guizar-Sicairos. Characterization of x-ray phase vortices by ptychographic coherent diffractive imaging. Opt. Lett., 39, 5281-5284(2014).

    [43] J. T. Lee et al. Laguerre–Gauss and Hermite–Gauss soft x-ray states generated using diffractive optics. Nat. Photonics, 13, 205-209(2019).

    [44] R. Chen et al. Orbital angular momentum waves: generation, detection, and emerging applications. IEEE Commun. Surv. Tutor., 22, 840-868(2019).

    [45] A. A. Lutman et al. Fresh-slice multicolour x-ray free-electron lasers. Nat. Photonics, 10, 745-750(2016).

    [46] A. Marinelli et al. High-intensity double-pulse x-ray free-electron laser. Nat. Commun., 6, 1-6(2015).

    [47] E. Hemsing et al. Longitudinal dispersion of orbital angular momentum modes in high-gain free-electron lasers. Phys. Rev. Spl. Top.-Accel. Beams, 11, 070704(2008).

    [48] E. Hemsing, A. Gover, J. Rosenzweig. Virtual dielectric waveguide mode description of a high-gain free-electron laser. ii. modeling and numerical simulations. Phys. Rev. A, 77, 063831(2008).

    [49] E. Saldin, E. Schneidmiller, M. Yurkov. Diffraction effects in the self-amplified spontaneous emission fel. Opt. Commun., 186, 185-209(2000).

    [50] S. Reiche. Genesis 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 429, 243-248(1999).

    [51] H. Yong et al. Direct monitoring of conical intersection passage via electronic coherences in twisted x-ray diffraction. Phys. Rev. Lett., 129, 103001(2022).

    Jiawei Yan, Gianluca Geloni. Self-seeded free-electron lasers with orbital angular momentum[J]. Advanced Photonics Nexus, 2023, 2(3): 036001
    Download Citation